These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 26516837)

  • 21. Plant-bacteria interactions in the removal of pollutants.
    Segura A; Ramos JL
    Curr Opin Biotechnol; 2013 Jun; 24(3):467-73. PubMed ID: 23098915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leaf Epiphytic Bacteria of Plants Colonizing Mine Residues: Possible Exploitation for Remediation of Air Pollutants.
    Sánchez-López AS; González-Chávez MDCA; Solís-Domínguez FA; Carrillo-González R; Rosas-Saito GH
    Front Microbiol; 2018; 9():3028. PubMed ID: 30581428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica.
    Mesa V; Navazas A; González-Gil R; González A; Weyens N; Lauga B; Gallego JLR; Sánchez J; Peláez AI
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytoremediation: State-of-the-art and a key role for the plant microbiome in future trends and research prospects.
    Thijs S; Sillen W; Weyens N; Vangronsveld J
    Int J Phytoremediation; 2017 Jan; 19(1):23-38. PubMed ID: 27484694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plants for Sustainable Improvement of Indoor Air Quality.
    Brilli F; Fares S; Ghirardo A; de Visser P; Calatayud V; Muñoz A; Annesi-Maesano I; Sebastiani F; Alivernini A; Varriale V; Menghini F
    Trends Plant Sci; 2018 Jun; 23(6):507-512. PubMed ID: 29681504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-significance of rhizosphere degradation during phytoremediation of MTBE.
    Ramaswami A; Rubin E; Bonola S
    Int J Phytoremediation; 2003; 5(4):315-31. PubMed ID: 14750560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phylloremediation of Air Pollutants: Exploiting the Potential of Plant Leaves and Leaf-Associated Microbes.
    Wei X; Lyu S; Yu Y; Wang Z; Liu H; Pan D; Chen J
    Front Plant Sci; 2017; 8():1318. PubMed ID: 28804491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.
    Ma Y; Prasad MN; Rajkumar M; Freitas H
    Biotechnol Adv; 2011; 29(2):248-58. PubMed ID: 21147211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants.
    Afzal M; Khan QM; Sessitsch A
    Chemosphere; 2014 Dec; 117():232-42. PubMed ID: 25078615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants.
    Rajtor M; Piotrowska-Seget Z
    Chemosphere; 2016 Nov; 162():105-16. PubMed ID: 27487095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards practical indoor air phytoremediation: A review.
    Pettit T; Irga PJ; Torpy FR
    Chemosphere; 2018 Oct; 208():960-974. PubMed ID: 30068040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Climate change driven plant-metal-microbe interactions.
    Rajkumar M; Prasad MN; Swaminathan S; Freitas H
    Environ Int; 2013 Mar; 53():74-86. PubMed ID: 23347948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perspectives of plant-associated microbes in heavy metal phytoremediation.
    Rajkumar M; Sandhya S; Prasad MN; Freitas H
    Biotechnol Adv; 2012; 30(6):1562-74. PubMed ID: 22580219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phyto/rhizoremediation studies using long-term PCB-contaminated soil.
    Mackova M; Prouzova P; Stursa P; Ryslava E; Uhlik O; Beranova K; Rezek J; Kurzawova V; Demnerova K; Macek T
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):817-29. PubMed ID: 19823887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytoremediation, Bioaugmentation, and the Plant Microbiome.
    Simmer RA; Schnoor JL
    Environ Sci Technol; 2022 Dec; 56(23):16602-16610. PubMed ID: 36399658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Main mechanism and affecting factors of phytoremediation of organic contaminated soil].
    Lin D; Zhu L; Gao Y
    Ying Yong Sheng Tai Xue Bao; 2003 Oct; 14(10):1799-803. PubMed ID: 14986392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilization of Air Pollutants by Plants: Need for Present and Future Scrutiny.
    Kumar S; Prasad S; Yadav KK
    J Agric Food Chem; 2019 Mar; 67(10):2741-2742. PubMed ID: 30816039
    [No Abstract]   [Full Text] [Related]  

  • 38. Engineering PGPMOs through Gene Editing and Systems Biology: A Solution for Phytoremediation?
    Basu S; Rabara RC; Negi S; Shukla P
    Trends Biotechnol; 2018 May; 36(5):499-510. PubMed ID: 29455935
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytoremediation: plant-endophyte partnerships take the challenge.
    Weyens N; van der Lelie D; Taghavi S; Vangronsveld J
    Curr Opin Biotechnol; 2009 Apr; 20(2):248-54. PubMed ID: 19327979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indoor-biofilter growth and exposure to airborne chemicals drive similar changes in plant root bacterial communities.
    Russell JA; Hu Y; Chau L; Pauliushchyk M; Anastopoulos I; Anandan S; Waring MS
    Appl Environ Microbiol; 2014 Aug; 80(16):4805-13. PubMed ID: 24878602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.