BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26516922)

  • 1. Sensing of p53 and EGFR Biomarkers Using High Efficiency SERS Substrates.
    Owens P; Phillipson N; Perumal J; O'Connor GM; Olivo M
    Biosensors (Basel); 2015 Oct; 5(4):664-77. PubMed ID: 26516922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering.
    Wei G; Wang L; Liu Z; Song Y; Sun L; Yang T; Li Z
    J Phys Chem B; 2005 Dec; 109(50):23941-7. PubMed ID: 16375382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe.
    Wang Z; Bonoiu A; Samoc M; Cui Y; Prasad PN
    Biosens Bioelectron; 2008 Jan; 23(6):886-91. PubMed ID: 17996441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific behavior of the p-aminothiophenol--silver sol system in their Ultra-Violet-Visible (UV-Visible) and Surface Enhanced Raman (SERS) spectra.
    Firkala T; Tálas E; Mihály J; Imre T; Kristyán S
    J Colloid Interface Sci; 2013 Nov; 410():59-66. PubMed ID: 24034220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An approach for fabricating self-assembled monolayer of Ag nanoparticles on gold as the SERS-active substrate.
    Chen H; Wang Y; Dong S; Wang E
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 May; 64(2):343-8. PubMed ID: 16384736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor.
    Domenici F; Bizzarri AR; Cannistraro S
    Int J Nanomedicine; 2011; 6():2033-42. PubMed ID: 21976978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein separation and identification using magnetic beads encoded with surface-enhanced Raman spectroscopy.
    Jun BH; Noh MS; Kim G; Kang H; Kim JH; Chung WJ; Kim MS; Kim YK; Cho MH; Jeong DH; Lee YS
    Anal Biochem; 2009 Aug; 391(1):24-30. PubMed ID: 19433055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver nanocube-mediated sensitive immunoassay based on surface-enhanced Raman scattering assisted by etched silicon nanowire arrays.
    Jiang T; Zhang L; Zhou J
    Analyst; 2014 Nov; 139(22):5893-900. PubMed ID: 25243249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers.
    Xu L; Yan W; Ma W; Kuang H; Wu X; Liu L; Zhao Y; Wang L; Xu C
    Adv Mater; 2015 Mar; 27(10):1706-11. PubMed ID: 25641772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-induced chemical transformation of PATP adsorbed on Ag nanoparticles by surface-enhanced Raman spectroscopy-a study of the effects from surface morphology of substrate and surface coverage of PATP.
    Xu JF; Liu GK
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():873-7. PubMed ID: 25467654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partition layer-modified substrates for reversible surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons.
    Jones CL; Bantz KC; Haynes CL
    Anal Bioanal Chem; 2009 May; 394(1):303-11. PubMed ID: 19263043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-enhanced Raman spectroscopy of dodecanethiol-bound silver nanoparticles at the liquid/liquid interface.
    Yamamoto S; Watarai H
    Langmuir; 2006 Jul; 22(15):6562-9. PubMed ID: 16830998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods.
    Wu L; Wang Z; Zong S; Huang Z; Zhang P; Cui Y
    Biosens Bioelectron; 2012; 38(1):94-9. PubMed ID: 22647534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled silver nanochains for surface-enhanced Raman scattering.
    Yang Y; Shi J; Tanaka T; Nogami M
    Langmuir; 2007 Nov; 23(24):12042-7. PubMed ID: 17963408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate.
    Shu L; Zhou J; Yuan X; Petti L; Chen J; Jia Z; Mormile P
    Talanta; 2014 Jun; 123():161-8. PubMed ID: 24725879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma-induced formation of Ag nanodots for ultra-high-enhancement surface-enhanced Raman scattering substrates.
    Li Z; Tong WM; Stickle WF; Neiman DL; Williams RS; Hunter LL; Talin AA; Li D; Brueck SR
    Langmuir; 2007 Apr; 23(9):5135-8. PubMed ID: 17385901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive Surface-Enhanced Raman Scattering Sensor of Gaseous Aldehydes as Biomarkers of Lung Cancer on Dendritic Ag Nanocrystals.
    Zhang Z; Yu W; Wang J; Luo D; Qiao X; Qin X; Wang T
    Anal Chem; 2017 Feb; 89(3):1416-1420. PubMed ID: 28208308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multilayered shell SERS nanotags with a highly uniform single-particle Raman readout for ultrasensitive immunoassays.
    Liu R; Liu B; Guan G; Jiang C; Zhang Z
    Chem Commun (Camb); 2012 Sep; 48(75):9421-3. PubMed ID: 22892795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection.
    Praveen BB; Steuwe C; Mazilu M; Dholakia K; Mahajan S
    Analyst; 2013 May; 138(10):2816-20. PubMed ID: 23562981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Off-Resonance SERS Nanoprobe-Targeted Screen of Biomarkers for Antigens Recognition of Bladder Normal and Aggressive Cancer Cells.
    Yang YT; Hsu IL; Cheng TY; Wu WJ; Lee CW; Li TJ; Cheung CI; Chin YC; Chen HC; Chiu YC; Huang CC; Liao MY
    Anal Chem; 2019 Jul; 91(13):8213-8220. PubMed ID: 31141343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.