These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
437 related articles for article (PubMed ID: 26517155)
1. Renal protective effects of arjunolic acid in a cisplatin-induced nephrotoxicity model. Elsherbiny NM; Eladl MA; Al-Gayyar MM Cytokine; 2016 Jan; 77():26-34. PubMed ID: 26517155 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of renal protective effects of inhibiting TGF-β type I receptor in a cisplatin-induced nephrotoxicity model. Bayomi HS; Elsherbiny NM; El-Gayar AM; Al-Gayyar MM Eur Cytokine Netw; 2013; 24(4):139-47. PubMed ID: 24590376 [TBL] [Abstract][Full Text] [Related]
3. Amelioration of cisplatin-induced nephrotoxicity in rats by triterpenoid saponin of Terminalia arjuna. Sherif IO Clin Exp Nephrol; 2015 Aug; 19(4):591-7. PubMed ID: 25389052 [TBL] [Abstract][Full Text] [Related]
4. Protective effects of arjunolic acid against cardiac toxicity induced by oral sodium nitrite: effects on cytokine balance and apoptosis. Al-Gayyar MM; Al Youssef A; Sherif IO; Shams ME; Abbas A Life Sci; 2014 Aug; 111(1-2):18-26. PubMed ID: 25064822 [TBL] [Abstract][Full Text] [Related]
5. Anti-tumor activity of arjunolic acid against Ehrlich Ascites Carcinoma cells in vivo and in vitro through blocking TGF-β type 1 receptor. Elsherbiny NM; Al-Gayyar MM Biomed Pharmacother; 2016 Aug; 82():28-34. PubMed ID: 27470335 [TBL] [Abstract][Full Text] [Related]
6. Mitigation of ILβ-1, ILβ-6, TNF-α, and markers of apoptosis by ursolic acid against cisplatin-induced oxidative stress and nephrotoxicity in rats. Tripathi P; Alshahrani S Hum Exp Toxicol; 2021 Dec; 40(12_suppl):S397-S405. PubMed ID: 34569348 [TBL] [Abstract][Full Text] [Related]
7. Betaine supplementation mitigates cisplatin-induced nephrotoxicity by abrogation of oxidative/nitrosative stress and suppression of inflammation and apoptosis in rats. Hagar H; Medany AE; Salam R; Medany GE; Nayal OA Exp Toxicol Pathol; 2015 Feb; 67(2):133-41. PubMed ID: 25488130 [TBL] [Abstract][Full Text] [Related]
9. Amelioration of Renal Inflammation, Endoplasmic Reticulum Stress and Apoptosis Underlies the Protective Effect of Low Dosage of Atorvastatin in Gentamicin-Induced Nephrotoxicity. Jaikumkao K; Pongchaidecha A; Thongnak LO; Wanchai K; Arjinajarn P; Chatsudthipong V; Chattipakorn N; Lungkaphin A PLoS One; 2016; 11(10):e0164528. PubMed ID: 27727327 [TBL] [Abstract][Full Text] [Related]
10. Anti-apoptotic and anti-inflammatory effects of naringin on cisplatin-induced renal injury in the rat. Chtourou Y; Aouey B; Aroui S; Kebieche M; Fetoui H Chem Biol Interact; 2016 Jan; 243():1-9. PubMed ID: 26612654 [TBL] [Abstract][Full Text] [Related]
11. Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro. Meng XM; Huang XR; Xiao J; Chen HY; Zhong X; Chung AC; Lan HY J Pathol; 2012 Jun; 227(2):175-88. PubMed ID: 22190171 [TBL] [Abstract][Full Text] [Related]
12. Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney. Domitrović R; Cvijanović O; Pugel EP; Zagorac GB; Mahmutefendić H; Škoda M Toxicology; 2013 Aug; 310():115-23. PubMed ID: 23770416 [TBL] [Abstract][Full Text] [Related]
13. Pioglitazone protects against cisplatin induced nephrotoxicity in rats and potentiates its anticancer activity against human renal adenocarcinoma cell lines. Mahmoud MF; El Shazly SM Food Chem Toxicol; 2013 Jan; 51():114-22. PubMed ID: 22989705 [TBL] [Abstract][Full Text] [Related]
14. Cisplatin-induced renal toxicity via tumor necrosis factor-α, interleukin 6, tumor suppressor P53, DNA damage, xanthine oxidase, histological changes, oxidative stress and nitric oxide in rats: protective effect of ginseng. Yousef MI; Hussien HM Food Chem Toxicol; 2015 Apr; 78():17-25. PubMed ID: 25640527 [TBL] [Abstract][Full Text] [Related]
15. Piracetam mitigates nephrotoxicity induced by cisplatin via the AMPK-mediated PI3K/Akt and MAPK/JNK/ERK signaling pathways. El-Dessouki AM; Alzokaky AA; Raslan NA; Ibrahim S; Salama LA; Yousef EH Int Immunopharmacol; 2024 Aug; 137():112511. PubMed ID: 38909496 [TBL] [Abstract][Full Text] [Related]
16. Pulchinenoside B4 exerts the protective effects against cisplatin-induced nephrotoxicity through NF-κB and MAPK mediated apoptosis signaling pathways in mice. Wang S; Tang S; Chen X; Li X; Jiang S; Li HP; Jia PH; Song MJ; Di P; Li W Chem Biol Interact; 2020 Nov; 331():109233. PubMed ID: 32991863 [TBL] [Abstract][Full Text] [Related]
17. Nephroprotective efficacy of ceftriaxone against cisplatin-induced subchronic renal fibrosis in rats. Abdel-Daim MM; El-Sayed YS; Eldaim MA; Ibrahim A Naunyn Schmiedebergs Arch Pharmacol; 2017 Mar; 390(3):301-309. PubMed ID: 27975300 [TBL] [Abstract][Full Text] [Related]
18. Apoptosis of tubulointerstitial chronic inflammatory cells in progressive renal fibrosis after cancer therapies. Yang T; Vesey DA; Johnson DW; Wei MQ; Gobe GC Transl Res; 2007 Jul; 150(1):40-50. PubMed ID: 17585862 [TBL] [Abstract][Full Text] [Related]
19. Piceatannol protects against cisplatin nephrotoxicity via activation of Nrf2/HO-1 pathway and hindering NF-κB inflammatory cascade. Wahdan SA; Azab SS; Elsherbiny DA; El-Demerdash E Naunyn Schmiedebergs Arch Pharmacol; 2019 Nov; 392(11):1331-1345. PubMed ID: 31197431 [TBL] [Abstract][Full Text] [Related]
20. Sildenafil attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity. Lee KW; Jeong JY; Lim BJ; Chang YK; Lee SJ; Na KR; Shin YT; Choi DE Toxicology; 2009 Mar; 257(3):137-43. PubMed ID: 19152827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]