BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26517259)

  • 1. Computational Design of Hypothetical New Peptides Based on a Cyclotide Scaffold as HIV gp120 Inhibitor.
    Sangphukieo A; Nawae W; Laomettachit T; Supasitthimethee U; Ruengjitchatchawalya M
    PLoS One; 2015; 10(11):e0139562. PubMed ID: 26517259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot.
    Colgrave ML; Craik DJ
    Biochemistry; 2004 May; 43(20):5965-75. PubMed ID: 15147180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the cyclic peptide backbone in the anti-HIV activity of the cyclotide kalata B1.
    Daly NL; Gustafson KR; Craik DJ
    FEBS Lett; 2004 Sep; 574(1-3):69-72. PubMed ID: 15358541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of conserved Glu residue on cyclotide stability and activity: a structural and functional study of kalata B12, a naturally occurring Glu to Asp mutant.
    Wang CK; Clark RJ; Harvey PJ; Rosengren KJ; Cemazar M; Craik DJ
    Biochemistry; 2011 May; 50(19):4077-86. PubMed ID: 21466163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational discovery of novel HIV-1 entry inhibitors based on potent and broad neutralizing antibody VRC01.
    Andrianov AM; Kashyn IA; Tuzikov AV
    J Mol Graph Model; 2015 Sep; 61():262-71. PubMed ID: 26298811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation and mode of membrane interaction in cyclotides. Spatial structure of kalata B1 bound to a dodecylphosphocholine micelle.
    Shenkarev ZO; Nadezhdin KD; Sobol VA; Sobol AG; Skjeldal L; Arseniev AS
    FEBS J; 2006 Jun; 273(12):2658-72. PubMed ID: 16817894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclotides as natural anti-HIV agents.
    Ireland DC; Wang CK; Wilson JA; Gustafson KR; Craik DJ
    Biopolymers; 2008; 90(1):51-60. PubMed ID: 18008336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities.
    Henriques ST; Huang YH; Rosengren KJ; Franquelim HG; Carvalho FA; Johnson A; Sonza S; Tachedjian G; Castanho MA; Daly NL; Craik DJ
    J Biol Chem; 2011 Jul; 286(27):24231-41. PubMed ID: 21576247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational studies identifying entry inhibitor scaffolds targeting the Phe43 cavity of HIV-1 gp120.
    Tintori C; Selvaraj M; Badia R; Clotet B; Esté JA; Botta M
    ChemMedChem; 2013 Mar; 8(3):475-83. PubMed ID: 23404750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, synthesis, structural and functional characterization of novel melanocortin agonists based on the cyclotide kalata B1.
    Eliasen R; Daly NL; Wulff BS; Andresen TL; Conde-Frieboes KW; Craik DJ
    J Biol Chem; 2012 Nov; 287(48):40493-501. PubMed ID: 23012369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphatidylethanolamine binding is a conserved feature of cyclotide-membrane interactions.
    Henriques ST; Huang YH; Castanho MA; Bagatolli LA; Sonza S; Tachedjian G; Daly NL; Craik DJ
    J Biol Chem; 2012 Sep; 287(40):33629-43. PubMed ID: 22854971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disulfide mapping of the cyclotide kalata B1. Chemical proof of the cystic cystine knot motif.
    Göransson U; Craik DJ
    J Biol Chem; 2003 Nov; 278(48):48188-96. PubMed ID: 12960160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico design of novel broad anti-HIV-1 agents based on glycosphingolipid β-galactosylceramide, a high-affinity receptor for the envelope gp120 V3 loop.
    Andrianov AM; Kornoushenko YV; Kashyn IA; Kisel MA; Tuzikov AV
    J Biomol Struct Dyn; 2015; 33(5):1051-66. PubMed ID: 24942968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic scenario of membrane binding process of kalata b1.
    Nawae W; Hannongbua S; Ruengjitchatchawalya M
    PLoS One; 2014; 9(12):e114473. PubMed ID: 25473840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The chemistry of cyclotides.
    Craik DJ; Conibear AC
    J Org Chem; 2011 Jun; 76(12):4805-17. PubMed ID: 21526790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical synthesis and biosynthesis of the cyclotide family of circular proteins.
    Gunasekera S; Daly NL; Anderson MA; Craik DJ
    IUBMB Life; 2006 Sep; 58(9):515-24. PubMed ID: 17002979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cyclotides: novel macrocyclic peptides as scaffolds in drug design.
    Craik DJ; Simonsen S; Daly NL
    Curr Opin Drug Discov Devel; 2002 Mar; 5(2):251-60. PubMed ID: 11926131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a novel cyclotide-based CXCR4 antagonist with anti-human immunodeficiency virus (HIV)-1 activity.
    Aboye TL; Ha H; Majumder S; Christ F; Debyser Z; Shekhtman A; Neamati N; Camarero JA
    J Med Chem; 2012 Dec; 55(23):10729-34. PubMed ID: 23151033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure by NMR of circulin A: a macrocyclic knotted peptide having anti-HIV activity.
    Daly NL; Koltay A; Gustafson KR; Boyd MR; Casas-Finet JR; Craik DJ
    J Mol Biol; 1999 Jan; 285(1):333-45. PubMed ID: 9878410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-Silico Template Selection of In-Vitro Evolved Kalata B1 of Oldenlandia Affinis for Scaffolding Peptide-Based Drug Design.
    Senthilkumar B; Kumar P; Rajasekaran R
    J Cell Biochem; 2016 Jan; 117(1):66-73. PubMed ID: 26052694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.