These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 26517275)
1. Bioaccumulation of copper, lead, and zinc in six macrophyte species grown in simulated stormwater bioretention systems. Rycewicz-Borecki M; McLean JE; Dupont RR J Environ Manage; 2016 Jan; 166():267-75. PubMed ID: 26517275 [TBL] [Abstract][Full Text] [Related]
2. Laboratory study of heavy metal phytoremediation by three wetland macrophytes. Weiss J; Hondzo M; Biesboer D; Semmens M Int J Phytoremediation; 2006; 8(3):245-59. PubMed ID: 17120528 [TBL] [Abstract][Full Text] [Related]
3. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China. Yao X; Niu Y; Li Y; Zou D; Ding X; Bian H Environ Sci Pollut Res Int; 2018 Jul; 25(20):20003-20011. PubMed ID: 29744779 [TBL] [Abstract][Full Text] [Related]
4. Heavy metal fates in laboratory bioretention systems. Sun X; Davis AP Chemosphere; 2007 Jan; 66(9):1601-9. PubMed ID: 17005239 [TBL] [Abstract][Full Text] [Related]
5. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Yang Y; Liang Y; Ghosh A; Song Y; Chen H; Tang M Environ Sci Pollut Res Int; 2015 Sep; 22(17):13179-93. PubMed ID: 25929455 [TBL] [Abstract][Full Text] [Related]
6. Recovering a copper mine soil using organic amendments and phytomanagement with Brassica juncea L. Rodríguez-Vila A; Covelo EF; Forján R; Asensio V J Environ Manage; 2015 Jan; 147():73-80. PubMed ID: 25262389 [TBL] [Abstract][Full Text] [Related]
7. Water quality improvement through bioretention: lead, copper, and zinc removal. Davis AP; Shokouhian M; Sharma H; Minami C; Winogradoff D Water Environ Res; 2003; 75(1):73-82. PubMed ID: 12683466 [TBL] [Abstract][Full Text] [Related]
8. Interactions of metals affect their distribution in tissues of Phragmites australis. Weis JS; Glover T; Weis P Environ Pollut; 2004 Oct; 131(3):409-15. PubMed ID: 15261404 [TBL] [Abstract][Full Text] [Related]
9. Capsella bursa-pastoris (L.) Medic. as a biomonitor of heavy metals. Aksoy A; Hale WH; Dixon JM Sci Total Environ; 1999 Feb; 226(2-3):177-86. PubMed ID: 10085567 [TBL] [Abstract][Full Text] [Related]
10. Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. Kachout SS; Mansoura AB; Mechergui R; Leclerc JC; Rejeb MN; Ouerghi Z J Sci Food Agric; 2012 Jan; 92(2):336-42. PubMed ID: 21935956 [TBL] [Abstract][Full Text] [Related]
11. Uptake and accumulation of potentially toxic metals (Zn, Cu and Pb) in soils and plants of Durgapur industrial belt. Kisku GC; Pandey P; Negi MP; Misra V J Environ Biol; 2011 Nov; 32(6):831-8. PubMed ID: 22471223 [TBL] [Abstract][Full Text] [Related]
12. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Yoon J; Cao X; Zhou Q; Ma LQ Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337 [TBL] [Abstract][Full Text] [Related]
13. Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil. Hockmann K; Tandy S; Studer B; Evangelou MWH; Schulin R Environ Pollut; 2018 Jul; 238():255-262. PubMed ID: 29567447 [TBL] [Abstract][Full Text] [Related]
14. The potential of willow for remediation of heavy metal polluted calcareous urban soils. Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141 [TBL] [Abstract][Full Text] [Related]
15. Zinc, copper, cadmium, and lead levels in cattle tissues in relation to different metal levels in ground water and soil. Skalny AV; Salnikova EV; Burtseva TI; Skalnaya MG; Tinkov AA Environ Sci Pollut Res Int; 2019 Jan; 26(1):559-569. PubMed ID: 30411286 [TBL] [Abstract][Full Text] [Related]
16. Economic incentive for applying vetiver grass to remediate lead, copper and zinc contaminated soils. Danh LT; Truong P; Mammucari R; Fostert N Int J Phytoremediation; 2011 Jan; 13(1):47-60. PubMed ID: 21598767 [TBL] [Abstract][Full Text] [Related]
17. Influence of the application renewal of glutamate and tartrate on Cd, Cu, Pb and Zn distribution between contaminated soil and Paulownia tomentosa in a pilot-scale assisted phytoremediation study. Doumett S; Fibbi D; Azzarello E; Mancuso S; Mugnai S; Petruzzelli G; Del Bubba M Int J Phytoremediation; 2011 Jan; 13(1):1-17. PubMed ID: 21598764 [TBL] [Abstract][Full Text] [Related]
18. Accumulation of Cu, Cd, Pb, Zn and total P from synthetic stormwater in 30 bioretention plants. Mei Y; Zhou H; Gao L; Zuo YM; Wei KH; Cui NQ Environ Sci Pollut Res Int; 2020 Jun; 27(16):19888-19900. PubMed ID: 32232755 [TBL] [Abstract][Full Text] [Related]
19. The traces elements absorption, accumulation and translocation ability of Sellal A; Belattar R Int J Phytoremediation; 2024; 26(5):618-625. PubMed ID: 37723665 [TBL] [Abstract][Full Text] [Related]
20. The use of vetiver for remediation of heavy metal soil contamination. Antiochia R; Campanella L; Ghezzi P; Movassaghi K Anal Bioanal Chem; 2007 Jun; 388(4):947-56. PubMed ID: 17468861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]