BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 26517361)

  • 1. Integrating knowledge of Mycobacterium tuberculosis pathogenesis for the design of better vaccines.
    Mascart F; Locht C
    Expert Rev Vaccines; 2015; 14(12):1573-85. PubMed ID: 26517361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycobacterium tuberculosis virulence: insights and impact on vaccine development.
    Delogu G; Provvedi R; Sali M; Manganelli R
    Future Microbiol; 2015; 10(7):1177-94. PubMed ID: 26119086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tuberculosis vaccine challenge.
    Brennan MJ
    Tuberculosis (Edinb); 2005; 85(1-2):7-12. PubMed ID: 15687021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global Efforts in the Development of Vaccines for Tuberculosis: Requirements for Improved Vaccines Against Mycobacterium tuberculosis.
    Méndez-Samperio P
    Scand J Immunol; 2016 Oct; 84(4):204-10. PubMed ID: 27454335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Mycobacterium tuberculosis with the host: consequences for vaccine development.
    Dietrich J; Doherty TM
    APMIS; 2009 May; 117(5-6):440-57. PubMed ID: 19400867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rv2299c, a novel dendritic cell-activating antigen of Mycobacterium tuberculosis, fused-ESAT-6 subunit vaccine confers improved and durable protection against the hypervirulent strain HN878 in mice.
    Choi HG; Choi S; Back YW; Paik S; Park HS; Kim WS; Kim H; Cha SB; Choi CH; Shin SJ; Kim HJ
    Oncotarget; 2017 Mar; 8(12):19947-19967. PubMed ID: 28193909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Novel vaccines against M. tuberculosis].
    Okada M
    Kekkaku; 2006 Dec; 81(12):745-51. PubMed ID: 17240920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunogenicity and protective efficacy of novel Mycobacterium tuberculosis antigens.
    Derrick SC; Yabe IM; Yang A; Kolibab K; Hollingsworth B; Kurtz SL; Morris S
    Vaccine; 2013 Sep; 31(41):4641-6. PubMed ID: 23906890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse and guinea pig models for testing new tuberculosis vaccines.
    Orme IM
    Tuberculosis (Edinb); 2005; 85(1-2):13-7. PubMed ID: 15687022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel tuberculosis vaccines on the horizon.
    Parida SK; Kaufmann SH
    Curr Opin Immunol; 2010 Jun; 22(3):374-84. PubMed ID: 20471231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mucosal delivery of antigen-coated nanoparticles to lungs confers protective immunity against tuberculosis infection in mice.
    Stylianou E; Diogo GR; Pepponi I; van Dolleweerd C; Arias MA; Locht C; Rider CC; Sibley L; Cutting SM; Loxley A; Ma JK; Reljic R
    Eur J Immunol; 2014 Feb; 44(2):440-9. PubMed ID: 24214530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delivery of a multivalent scrambled antigen vaccine induces broad spectrum immunity and protection against tuberculosis.
    West NP; Thomson SA; Triccas JA; Medveczky CJ; Ramshaw IA; Britton WJ
    Vaccine; 2011 Oct; 29(44):7759-65. PubMed ID: 21846485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments in tuberculosis vaccines.
    Haile M; Källenius G
    Curr Opin Infect Dis; 2005 Jun; 18(3):211-5. PubMed ID: 15864097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lymph node targeting of BCG vaccines amplifies CD4 and CD8 T-cell responses and protection against Mycobacterium tuberculosis.
    Waeckerle-Men Y; Bruffaerts N; Liang Y; Jurion F; Sander P; Kündig TM; Huygen K; Johansen P
    Vaccine; 2013 Feb; 31(7):1057-64. PubMed ID: 23273509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vaccine-induced anti-tuberculosis protective immunity in mice correlates with the magnitude and quality of multifunctional CD4 T cells.
    Derrick SC; Yabe IM; Yang A; Morris SL
    Vaccine; 2011 Apr; 29(16):2902-9. PubMed ID: 21338678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The safety of post-exposure vaccination of mice infected with Mycobacterium tuberculosis.
    Derrick SC; Perera LP; Dheenadhayalan V; Yang A; Kolibab K; Morris SL
    Vaccine; 2008 Nov; 26(48):6092-8. PubMed ID: 18809446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a new tuberculosis vaccine: is there value in the mucosal approach?
    Diogo GR; Reljic R
    Immunotherapy; 2014; 6(9):1001-13. PubMed ID: 25341121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel DNA vaccine containing multiple TB-specific epitopes cast in a natural structure elicits enhanced Th1 immunity compared with BCG.
    Gao H; Li K; Yu S; Xiong S
    Microbiol Immunol; 2009 Oct; 53(10):541-9. PubMed ID: 19780967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of pulmonary DC function by vaccine-encoded GM-CSF enhances protective immunity against Mycobacterium tuberculosis infection.
    Nambiar JK; Ryan AA; Kong CU; Britton WJ; Triccas JA
    Eur J Immunol; 2010 Jan; 40(1):153-61. PubMed ID: 19830735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rationalized design of a mucosal vaccine protects against
    Ahmed M; Jiao H; Domingo-Gonzalez R; Das S; Griffiths KL; Rangel-Moreno J; Nagarajan UM; Khader SA
    J Leukoc Biol; 2017 Jun; 101(6):1373-1381. PubMed ID: 28258153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.