BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26517389)

  • 1. Dual enhancement-inhibition roles of polycarboxylates in Cr(VI) reduction and organic pollutant oxidation in electrical plasma system.
    Jiang B; Wang X; Hu P; Wu M; Zheng J; Wu W
    Chemosphere; 2016 Feb; 144():1611-7. PubMed ID: 26517389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergetic Transformations of Multiple Pollutants Driven by Cr(VI)-Sulfite Reactions.
    Jiang B; Liu Y; Zheng J; Tan M; Wang Z; Wu M
    Environ Sci Technol; 2015 Oct; 49(20):12363-71. PubMed ID: 26384045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decomplexation of Cr(III)-EDTA and simultaneous abatement of total Cr by photo-oxidation: efficiency and in situ reduction of intermediate Cr(VI).
    Huang X; Wang X; Guan DX; Zhou H; Bei K; Zheng X; Jin Z; Zhang Y; Wang Q; Zhao M
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8516-8524. PubMed ID: 30761490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electro-peroxone enables efficient Cr removal and recovery from Cr(III) complexes and inhibits intermediate Cr(VI) generation in wastewater: Performance and mechanism.
    Chen C; Liu P; Li Y; Tian H; Zhang Y; Zheng X; Liu R; Zhao M; Huang X
    Water Res; 2022 Jun; 218():118502. PubMed ID: 35490457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical coupling reactions between Fe(III)/Fe(II), Cr(VI)/Cr(III), and polycarboxylates: inhibitory effect of Cr species.
    Wang Z; Ma W; Chen C; Zhao J
    Environ Sci Technol; 2008 Oct; 42(19):7260-6. PubMed ID: 18939556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of ZnO immobilized on recycled polyethylene terephtalate for sonocatalytic removal of Cr(VI) from synthetic, drinking waters and electroplating wastewater.
    Pourrahmati-Shiraz M; Mohagheghian A; Shirzad-Siboni M
    J Environ Manage; 2022 Dec; 324():116395. PubMed ID: 36352728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition.
    Chang IS; Kim BH
    Chemosphere; 2007 Jun; 68(2):218-26. PubMed ID: 17337035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous oxidation of phenol and reduction of Cr(VI) induced by contact glow discharge electrolysis.
    Liu Y
    J Hazard Mater; 2009 Sep; 168(2-3):992-6. PubMed ID: 19327885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The roles of polycarboxylates in Cr(VI)/sulfite reaction system: Involvement of reactive oxygen species and intramolecular electron transfer.
    Jiang B; Wang X; Liu Y; Wang Z; Zheng J; Wu M
    J Hazard Mater; 2016 Mar; 304():457-66. PubMed ID: 26610099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect on simultaneous treatment of Cr(VI) and chloramphenicol using a non-thermal plasma technology.
    Chen JP; Song C; Jin T; Xu J; Yang LM
    Chemosphere; 2024 Jul; 359():142304. PubMed ID: 38734253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils.
    Rock ML; James BR; Helz GR
    Environ Sci Technol; 2001 Oct; 35(20):4054-9. PubMed ID: 11686366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-dependent roles of polycarboxylates in electron transfer between Cr(VI) and weak electron donors.
    Jiang B; He H; Liu Y; Tang Y; Luo S; Wang Z
    Chemosphere; 2018 Apr; 197():367-374. PubMed ID: 29407807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-functional photocatalytic fuel cell for simultaneous removal of organic pollutant and chromium (VI) accompanied with electricity production.
    Liu XH; Xing ZH; Chen QY; Wang YH
    Chemosphere; 2019 Dec; 237():124457. PubMed ID: 31382197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in-depth insight into the simultaneous oxidation of sulfamethoxazole and reduction of Cr (VI) by one system of water film DBD plasma: The interaction effect, role of active species, and their dominant to pathways.
    Wang Y; Jiang W; Han J; Qiao W; Guo H
    Chemosphere; 2023 Aug; 333():138958. PubMed ID: 37209852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ecological new approach for treating Cr(VI)-containing industrial wastewater: Photochemical reduction.
    Liu J; Huang K; Xie K; Yang Y; Liu H
    Water Res; 2016 Apr; 93():187-194. PubMed ID: 26905797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Removal of Hexavalent Chromium in the Presence of H2O2 in Frozen Aqueous Solutions.
    Kim K; Kim J; Bokare AD; Choi W; Yoon HI; Kim J
    Environ Sci Technol; 2015 Sep; 49(18):10937-44. PubMed ID: 26317508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater.
    Xia S; Song Z; Jeyakumar P; Bolan N; Wang H
    Environ Geochem Health; 2020 Jun; 42(6):1543-1567. PubMed ID: 31673917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Cr(VI) removal from simulated electroplating rinse wastewater by amino-functionalized vermiculite-supported nanoscale zero-valent iron.
    Zhao R; Zhou Z; Zhao X; Jing G
    Chemosphere; 2019 Mar; 218():458-467. PubMed ID: 30485829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The self-boosting ultrafast removal of Cr(VI) and organic dye in textile wastewater through sulfite-induced redox processes.
    Yuan Y; Tian Q; Hou L; Rao R; Yao C; Zhu H
    Environ Pollut; 2024 Aug; 355():124182. PubMed ID: 38776997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.