These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26517940)

  • 1. Porous membranes for ballast water treatment from microalgae-rich seawater.
    Guilbaud J; Massé A; Wolff FC; Jaouen P
    Mar Pollut Bull; 2015 Dec; 101(2):612-7. PubMed ID: 26517940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High efficiency inactivation of microalgae in ballast water by a new proposed dual-wave UV-photocatalysis system (UVA/UVC-TiO
    Lu Z; Zhang K; Liu X; Shi Y
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7785-7792. PubMed ID: 30673945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Onshore ballast water treatment: a viable option for major ports.
    Pereira NN; Brinati HL
    Mar Pollut Bull; 2012 Nov; 64(11):2296-304. PubMed ID: 22920715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential effects of LNG trade shift on transfer of ballast water and biota by ships.
    Holzer KK; Muirhead JR; Minton MS; Carney KJ; Miller AW; Ruiz GM
    Sci Total Environ; 2017 Feb; 580():1470-1474. PubMed ID: 28038872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of gravity-driven membrane (GDM) filtration process for seawater pretreatment.
    Wu B; Hochstrasser F; Akhondi E; Ambauen N; Tschirren L; Burkhardt M; Fane AG; Pronk W
    Water Res; 2016 Apr; 93():133-140. PubMed ID: 26900974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of microalgae in ballast water with pulse intense light treatment.
    Feng D; Shi J; Sun D
    Mar Pollut Bull; 2015 Jan; 90(1-2):299-303. PubMed ID: 25440896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Management and environmental risk study of the physicochemical parameters of ballast water.
    Nosrati-Ghods N; Ghadiri M; Früh WG
    Mar Pollut Bull; 2017 Jan; 114(1):428-438. PubMed ID: 27720218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide.
    Stehouwer PP; Buma A; Peperzak L
    Environ Technol; 2015; 36(13-16):2094-104. PubMed ID: 25704551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of a biological deoxygenation process for ships' ballast water treatment under very cold water conditions.
    de Lafontaine Y; Despatie SP
    Sci Total Environ; 2014 Feb; 472():1036-43. PubMed ID: 24345863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ships' Ballast Water Treatment by Chlorination Can Generate Toxic Trihalomethanes.
    Hernandez MR; Ismail N; Drouillard KG; MacIsaac HJ
    Bull Environ Contam Toxicol; 2017 Aug; 99(2):194-199. PubMed ID: 28638964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permeate flux optimisation of a pilot microfiltration plant for cost-effectiveness of water reclamation for reuse.
    Xie RJ; Gomez MJ; Xing YJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(7):1169-81. PubMed ID: 16854793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of imaging-in-flow system (FlowCAM) for systematic ballast water management.
    Romero-Martínez L; van Slooten C; Nebot E; Acevedo-Merino A; Peperzak L
    Sci Total Environ; 2017 Dec; 603-604():550-561. PubMed ID: 28645053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Studies for killing the oceanic harmful organisms in ship's ballast water using hydroxyl radicals].
    Bai MD; Zhang NH; Zhang ZT; Chen C; Meng XY
    Huan Jing Ke Xue; 2012 Feb; 33(2):454-8. PubMed ID: 22509581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ballast water treatment systems: design, regulations, and selection under the choice varying priorities.
    Satir T
    Environ Sci Pollut Res Int; 2014 Sep; 21(18):10686-95. PubMed ID: 24894755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the effectiveness of filtration + UV-C radiation for the treatment of simulated ballast water at various holding times.
    Wang Y; Wang Q; Dong K; Chen J; Wu H
    Water Sci Technol; 2023 May; 87(10):2564-2576. PubMed ID: 37257110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV-based technologies for marine water disinfection and the application to ballast water: Does salinity interfere with disinfection processes?
    Moreno-Andrés J; Romero-Martínez L; Acevedo-Merino A; Nebot E
    Sci Total Environ; 2017 Mar; 581-582():144-152. PubMed ID: 28011021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Electrokinetic Microfluidic Detector for Evaluating Effectiveness of Microalgae Disinfection in Ship Ballast Water.
    Maw MM; Wang J; Li F; Jiang J; Song Y; Pan X
    Int J Mol Sci; 2015 Oct; 16(10):25560-75. PubMed ID: 26516836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of water suitable as the MEPC.174(58) G8 influent water for testing ballast water management systems.
    D'Agostino F; Del Core M; Cappello S; Mazzola S; Sprovieri M
    Environ Monit Assess; 2015 Oct; 187(10):642. PubMed ID: 26403705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe.
    Jung Y; Yoon Y; Hong E; Kwon M; Kang JW
    Mar Pollut Bull; 2013 Jul; 72(1):71-9. PubMed ID: 23711837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial dynamics in acetate-enriched ballast water at different temperatures.
    Stehouwer PP; van Slooten C; Peperzak L
    Ecotoxicol Environ Saf; 2013 Oct; 96():93-8. PubMed ID: 23871568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.