These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 26518212)

  • 1. The Maize PI/GLO Ortholog Zmm16/sterile tassel silky ear1 Interacts with the Zygomorphy and Sex Determination Pathways in Flower Development.
    Bartlett ME; Williams SK; Taylor Z; DeBlasio S; Goldshmidt A; Hall DH; Schmidt RJ; Jackson DP; Whipple CJ
    Plant Cell; 2015 Nov; 27(11):3081-98. PubMed ID: 26518212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses.
    Münster T; Wingen LU; Faigl W; Werth S; Saedler H; Theissen G
    Gene; 2001 Jan; 262(1-2):1-13. PubMed ID: 11179662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation of B-class floral homeotic gene function between maize and Arabidopsis.
    Whipple CJ; Ciceri P; Padilla CM; Ambrose BA; Bandong SL; Schmidt RJ
    Development; 2004 Dec; 131(24):6083-91. PubMed ID: 15537689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial redundancy and functional specialization of E-class SEPALLATA genes in an early-diverging eudicot.
    Soza VL; Snelson CD; Hewett Hazelton KD; Di Stilio VS
    Dev Biol; 2016 Nov; 419(1):143-155. PubMed ID: 27502434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation.
    Kalivas A; Pasentsis K; Polidoros AN; Tsaftaris AS
    DNA Seq; 2007 Apr; 18(2):120-30. PubMed ID: 17364823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize.
    Bomblies K; Wang RL; Ambrose BA; Schmidt RJ; Meeley RB; Doebley J
    Development; 2003 Jun; 130(11):2385-95. PubMed ID: 12702653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architecture of floral branch systems in maize and related grasses.
    Vollbrecht E; Springer PS; Goh L; Buckler ES; Martienssen R
    Nature; 2005 Aug; 436(7054):1119-26. PubMed ID: 16041362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. delayed flowering1 Encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize.
    Muszynski MG; Dam T; Li B; Shirbroun DM; Hou Z; Bruggemann E; Archibald R; Ananiev EV; Danilevskaya ON
    Plant Physiol; 2006 Dec; 142(4):1523-36. PubMed ID: 17071646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS.
    Schmidt RJ; Veit B; Mandel MA; Mena M; Hake S; Yanofsky MF
    Plant Cell; 1993 Jul; 5(7):729-37. PubMed ID: 8103379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana.
    Hsu HF; Hsieh WP; Chen MK; Chang YY; Yang CH
    Plant Cell Physiol; 2010 Jun; 51(6):1029-45. PubMed ID: 20395287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recruitment of an ancient branching program to suppress carpel development in maize flowers.
    Klein H; Gallagher J; Demesa-Arevalo E; Abraham-Juárez MJ; Heeney M; Feil R; Lunn JE; Xiao Y; Chuck G; Whipple C; Jackson D; Bartlett M
    Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34996873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary Dynamics of Floral Homeotic Transcription Factor Protein-Protein Interactions.
    Bartlett M; Thompson B; Brabazon H; Del Gizzi R; Zhang T; Whipple C
    Mol Biol Evol; 2016 Jun; 33(6):1486-501. PubMed ID: 26908583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism.
    Sather DN; Jovanovic M; Golenberg EM
    BMC Plant Biol; 2010 Mar; 10():46. PubMed ID: 20226063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development.
    Vandenbussche M; Zethof J; Royaert S; Weterings K; Gerats T
    Plant Cell; 2004 Mar; 16(3):741-54. PubMed ID: 14973163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1.
    Chuck G; Meeley R; Irish E; Sakai H; Hake S
    Nat Genet; 2007 Dec; 39(12):1517-21. PubMed ID: 18026103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural variation in maize architecture is mediated by allelic differences at the PINOID co-ortholog barren inflorescence2.
    Pressoir G; Brown PJ; Zhu W; Upadyayula N; Rocheford T; Buckler ES; Kresovich S
    Plant J; 2009 May; 58(4):618-28. PubMed ID: 19154226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1.
    Chuck G; Meeley R; Hake S
    Development; 2008 Sep; 135(18):3013-9. PubMed ID: 18701544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of class B and class C floral organ identity genes from rice plants.
    Kang HG; Jeon JS; Lee S; An G
    Plant Mol Biol; 1998 Dec; 38(6):1021-9. PubMed ID: 9869408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An AT-hook gene is required for palea formation and floral organ number control in rice.
    Jin Y; Luo Q; Tong H; Wang A; Cheng Z; Tang J; Li D; Zhao X; Li X; Wan J; Jiao Y; Chu C; Zhu L
    Dev Biol; 2011 Nov; 359(2):277-88. PubMed ID: 21924254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. tassel-less1 encodes a boron channel protein required for inflorescence development in maize.
    Leonard A; Holloway B; Guo M; Rupe M; Yu G; Beatty M; Zastrow-Hayes G; Meeley R; Llaca V; Butler K; Stefani T; Jaqueth J; Li B
    Plant Cell Physiol; 2014 Jun; 55(6):1044-54. PubMed ID: 24685595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.