These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26518412)

  • 1. Non-invasive and Non-destructive Characterization of Tissue Engineered Constructs Using Ultrasound Imaging Technologies: A Review.
    Kim K; Wagner WR
    Ann Biomed Eng; 2016 Mar; 44(3):621-35. PubMed ID: 26518412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials.
    Dalecki D; Mercado KP; Hocking DC
    Ann Biomed Eng; 2016 Mar; 44(3):636-48. PubMed ID: 26581347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a High-Throughput Ultrasound Technique for the Analysis of Tissue Engineering Constructs.
    Stukel JM; Goss M; Zhou H; Zhou W; Willits RK; Exner AA
    Ann Biomed Eng; 2016 Mar; 44(3):793-802. PubMed ID: 26577255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound technologies for biomaterials fabrication and imaging.
    Dalecki D; Hocking DC
    Ann Biomed Eng; 2015 Mar; 43(3):747-61. PubMed ID: 25326439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nondestructive method to evaluate the collagen content of fibrin-based tissue engineered structures via ultrasound.
    Kreitz S; Dohmen G; Hasken S; Schmitz-Rode T; Mela P; Jockenhoevel S
    Tissue Eng Part C Methods; 2011 Oct; 17(10):1021-6. PubMed ID: 21663456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nondestructive monitoring of tissue-engineered constructs.
    Frese J; Morgenroth A; Mertens ME; Koch S; Rongen L; Vogg AT; Zlatopolskiy BD; Neumaier B; Gesche VN; Lammers T; Schmitz-Rode T; Mela P; Jockenhoevel S; Mottaghy FM; Kiessling F
    Biomed Tech (Berl); 2014 Apr; 59(2):165-75. PubMed ID: 24021591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT.
    Gurjarpadhye AA; Whited BM; Sampson A; Niu G; Sharma KS; Vogt WC; Wang G; Xu Y; Soker S; Rylander MN; Rylander CG
    Lasers Surg Med; 2013 Aug; 45(6):391-400. PubMed ID: 23740768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motility imaging via optical coherence phase microscopy enables label-free monitoring of tissue growth and viability in 3D tissue-engineering scaffolds.
    Holmes C; Tabrizian M; Bagnaninchi PO
    J Tissue Eng Regen Med; 2015 May; 9(5):641-5. PubMed ID: 23401413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New advances in liver decellularization and recellularization: innovative and critical technologies.
    Lin YQ; Wang LR; Wang JT; Pan LL; Zhu GQ; Liu WY; Braddock M; Zheng MH
    Expert Rev Gastroenterol Hepatol; 2015; 9(9):1183-91. PubMed ID: 26220044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues.
    Ozturk MS; Chen CW; Ji R; Zhao L; Nguyen BN; Fisher JP; Chen Y; Intes X
    Ann Biomed Eng; 2016 Mar; 44(3):667-79. PubMed ID: 26645079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing engineered tissues and biomaterials using ultrasound imaging: In vitro and in vivo applications.
    Sebastian JA; Strohm EM; Baranger J; Villemain O; Kolios MC; Simmons CA
    Biomaterials; 2023 May; 296():122054. PubMed ID: 36842239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering.
    Hanson S; D'Souza RN; Hematti P
    Tissue Eng Part A; 2014 Aug; 20(15-16):2162-8. PubMed ID: 25140989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering complex tissues.
    Atala A; Kasper FK; Mikos AG
    Sci Transl Med; 2012 Nov; 4(160):160rv12. PubMed ID: 23152327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional imaging technologies: a priority for the advancement of tissue engineering and a challenge for the imaging community.
    Teodori L; Crupi A; Costa A; Diaspro A; Melzer S; Tarnok A
    J Biophotonics; 2017 Jan; 10(1):24-45. PubMed ID: 27110674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocomposites reinforced by fibers or tubes as scaffolds for tissue engineering or regenerative medicine.
    Li X; Yang Y; Fan Y; Feng Q; Cui FZ; Watari F
    J Biomed Mater Res A; 2014 May; 102(5):1580-94. PubMed ID: 23681610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive and in situ characterization of the degradation of biomaterial scaffolds by volumetric photoacoustic microscopy.
    Zhang YS; Cai X; Yao J; Xing W; Wang LV; Xia Y
    Angew Chem Int Ed Engl; 2014 Jan; 53(1):184-8. PubMed ID: 24130155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design concepts and strategies for tissue engineering scaffolds.
    Chung S; King MW
    Biotechnol Appl Biochem; 2011; 58(6):423-38. PubMed ID: 22172105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cartilage Tissue Engineering: What Have We Learned in Practice?
    Doran PM
    Methods Mol Biol; 2015; 1340():3-21. PubMed ID: 26445827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of scaffold-cell entrapment capacity and physico-chemical properties on cartilage regeneration.
    Hendriks JA; Moroni L; Riesle J; de Wijn JR; van Blitterswijk CA
    Biomaterials; 2013 Jun; 34(17):4259-65. PubMed ID: 23489921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid use of combined and sequential delivery of growth factors and ultrasound stimulation in porous multilayer composite scaffolds to promote both vascularization and bone formation in bone tissue engineering.
    Yan H; Liu X; Zhu M; Luo G; Sun T; Peng Q; Zeng Y; Chen T; Wang Y; Liu K; Feng B; Weng J; Wang J
    J Biomed Mater Res A; 2016 Jan; 104(1):195-208. PubMed ID: 26282063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.