These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 26518441)
61. The Change in Winter Wheat Response to Deoxynivalenol and Fusarium Head Blight Through Technological and Agronomic Progress. Xia R; Schaafsma AW; Wu F; Hooker DC Plant Dis; 2021 Apr; 105(4):840-850. PubMed ID: 32910730 [TBL] [Abstract][Full Text] [Related]
62. Engineering Fusarium head blight resistance in wheat by expression of a fusion protein containing a Fusarium-specific antibody and an antifungal peptide. Li HP; Zhang JB; Shi RP; Huang T; Fischer R; Liao YC Mol Plant Microbe Interact; 2008 Sep; 21(9):1242-8. PubMed ID: 18700828 [TBL] [Abstract][Full Text] [Related]
63. Tissue-specific and pathogen-inducible expression of a fusion protein containing a Fusarium-specific antibody and a fungal chitinase protects wheat against Fusarium pathogens and mycotoxins. Cheng W; Li HP; Zhang JB; Du HJ; Wei QY; Huang T; Yang P; Kong XW; Liao YC Plant Biotechnol J; 2015 Jun; 13(5):664-74. PubMed ID: 25418882 [TBL] [Abstract][Full Text] [Related]
64. Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Mackintosh CA; Lewis J; Radmer LE; Shin S; Heinen SJ; Smith LA; Wyckoff MN; Dill-Macky R; Evans CK; Kravchenko S; Baldridge GD; Zeyen RJ; Muehlbauer GJ Plant Cell Rep; 2007 Apr; 26(4):479-88. PubMed ID: 17103001 [TBL] [Abstract][Full Text] [Related]
65. Transgene pyramiding in wheat: Combination of deoxynivalenol detoxification with inhibition of cell wall degrading enzymes to contrast Fusarium Head Blight and Crown Rot. Mandalà G; Ceoloni C; Busato I; Favaron F; Tundo S Plant Sci; 2021 Dec; 313():111059. PubMed ID: 34763853 [TBL] [Abstract][Full Text] [Related]
66. Minimal impacts on the wheat microbiome when Alukumbura AS; Bigi A; Sarrocco S; Fernando WGD; Vannacci G; Mazzoncini M; Bakker MG Front Microbiol; 2022; 13():972016. PubMed ID: 36212885 [TBL] [Abstract][Full Text] [Related]
67. Evaluation of PSP1 biostimulant on Fusarium graminearum-wheat pathosystem: impact on disease parameters, grain yield, and grain quality. Martínez M; Arata A; Dinolfo MI; Lázaro L; Welin B; Stenglein S Pest Manag Sci; 2024 Jul; 80(7):3578-3589. PubMed ID: 38450978 [TBL] [Abstract][Full Text] [Related]
68. Fusarium cerealis causing Fusarium head blight of durum wheat and its associated mycotoxins. Palacios SA; Del Canto A; Erazo J; Torres AM Int J Food Microbiol; 2021 May; 346():109161. PubMed ID: 33773354 [TBL] [Abstract][Full Text] [Related]
69. Mapping of QTL for Fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from Triticum dicoccum × Triticum durum. Buerstmayr M; Huber K; Heckmann J; Steiner B; Nelson JC; Buerstmayr H Theor Appl Genet; 2012 Dec; 125(8):1751-65. PubMed ID: 22926291 [TBL] [Abstract][Full Text] [Related]
70. UAV-Based Thermal, RGB Imaging and Gene Expression Analysis Allowed Detection of Fusarium Head Blight and Gave New Insights Into the Physiological Responses to the Disease in Durum Wheat. Francesconi S; Harfouche A; Maesano M; Balestra GM Front Plant Sci; 2021; 12():628575. PubMed ID: 33868331 [TBL] [Abstract][Full Text] [Related]
71. Causal agents of Fusarium head blight of durum wheat (Triticum durum Desf.) in central Italy and their in vitro biosynthesis of secondary metabolites. Beccari G; Colasante V; Tini F; Senatore MT; Prodi A; Sulyok M; Covarelli L Food Microbiol; 2018 Apr; 70():17-27. PubMed ID: 29173624 [TBL] [Abstract][Full Text] [Related]
72. A model wheat cultivar for transformation to improve resistance to Fusarium Head Blight. Mackintosh CA; Garvin DF; Radmer LE; Heinen SJ; Muehlbauer GJ Plant Cell Rep; 2006 Apr; 25(4):313-9. PubMed ID: 16252090 [TBL] [Abstract][Full Text] [Related]
73. Durum wheat (Triticum Durum Desf.) lines show different abilities to form masked mycotoxins under greenhouse conditions. Cirlini M; Generotti S; Dall'Erta A; Lancioni P; Ferrazzano G; Massi A; Galaverna G; Dall'Asta C Toxins (Basel); 2013 Dec; 6(1):81-95. PubMed ID: 24368326 [TBL] [Abstract][Full Text] [Related]
74. Potential of Bacillus amyloliquefaciens for biocontrol of bacterial canker of tomato incited by Clavibacter michiganensis ssp. michiganensis. Gautam S; Chauhan A; Sharma R; Sehgal R; Shirkot CK Microb Pathog; 2019 May; 130():196-203. PubMed ID: 30878620 [TBL] [Abstract][Full Text] [Related]
75. Rhizocompetence and antagonistic activity towards genetically diverse Ralstonia solanacearum strains--an improved strategy for selecting biocontrol agents. Xue QY; Ding GC; Li SM; Yang Y; Lan CZ; Guo JH; Smalla K Appl Microbiol Biotechnol; 2013 Feb; 97(3):1361-71. PubMed ID: 22526784 [TBL] [Abstract][Full Text] [Related]
76. Investigating Useful Properties of Four Colombo EM; Kunova A; Gardana C; Pizzatti C; Simonetti P; Cortesi P; Saracchi M; Pasquali M Toxins (Basel); 2020 Aug; 12(9):. PubMed ID: 32878002 [No Abstract] [Full Text] [Related]
78. An attempt to protect winter wheat against Fusarium culmorum by the use of rhizobacteria Pseudomonas fluorescens and Bacillus mycoides. Czaban J; Ksiezniak A; Perzyński A Pol J Microbiol; 2004; 53(3):175-82. PubMed ID: 15702917 [TBL] [Abstract][Full Text] [Related]
79. Impact of post-anthesis rainfall, fungicide and harvesting time on the concentration of deoxynivalenol and zearalenone in wheat. Kharbikar LL; Dickin ET; Edwards SG Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(12):2075-85. PubMed ID: 26361223 [TBL] [Abstract][Full Text] [Related]
80. Effects of wheat varieties, fungicides and application time on Fusarium head blight and deoxynivalenol contamination control in wheat. Meng D; Dong X; He X; Pan R; Sun M; Chu Y; Tong Z; Yi X; Fan H; Gao T; Duan J Pest Manag Sci; 2023 Dec; 79(12):4784-4794. PubMed ID: 37471098 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]