BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 26518594)

  • 1. A Unified Model of Performance: Validation of its Predictions across Different Sleep/Wake Schedules.
    Ramakrishnan S; Wesensten NJ; Balkin TJ; Reifman J
    Sleep; 2016 Jan; 39(1):249-62. PubMed ID: 26518594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Unified Model of Performance for Predicting the Effects of Sleep and Caffeine.
    Ramakrishnan S; Wesensten NJ; Kamimori GH; Moon JE; Balkin TJ; Reifman J
    Sleep; 2016 Oct; 39(10):1827-1841. PubMed ID: 27397562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unified mathematical model to quantify performance impairment for both chronic sleep restriction and total sleep deprivation.
    Rajdev P; Thorsley D; Rajaraman S; Rupp TL; Wesensten NJ; Balkin TJ; Reifman J
    J Theor Biol; 2013 Aug; 331():66-77. PubMed ID: 23623949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-sleep inertia performance benefits of longer naps in simulated nightwork and extended operations.
    Mulrine HM; Signal TL; van den Berg MJ; Gander PH
    Chronobiol Int; 2012 Nov; 29(9):1249-57. PubMed ID: 23002951
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Reifman J; Kumar K; Wesensten NJ; Tountas NA; Balkin TJ; Ramakrishnan S
    Sleep; 2016 Dec; 39(12):2157-2159. PubMed ID: 27634801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time individualization of the unified model of performance.
    Liu J; Ramakrishnan S; Laxminarayan S; Balkin TJ; Reifman J
    J Sleep Res; 2017 Dec; 26(6):820-831. PubMed ID: 28436072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of split sleep schedules (6h-on/6h-off) on neurobehavioural performance, sleep and sleepiness.
    Short MA; Centofanti S; Hilditch C; Banks S; Lushington K; Dorrian J
    Appl Ergon; 2016 May; 54():72-82. PubMed ID: 26851466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mood, alertness, and performance in response to sleep deprivation and recovery sleep in experienced shiftworkers versus non-shiftworkers.
    Wehrens SM; Hampton SM; Kerkhofs M; Skene DJ
    Chronobiol Int; 2012 Jun; 29(5):537-48. PubMed ID: 22621349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of a split sleep-wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony.
    Kosmadopoulos A; Sargent C; Darwent D; Zhou X; Dawson D; Roach GD
    Chronobiol Int; 2014 Dec; 31(10):1209-17. PubMed ID: 25222348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic circadian modulation in a biomathematical model for the effects of sleep and sleep loss on waking neurobehavioral performance.
    McCauley P; Kalachev LV; Mollicone DJ; Banks S; Dinges DF; Van Dongen HP
    Sleep; 2013 Dec; 36(12):1987-97. PubMed ID: 24293775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic sleep curtailment, even without extended (>16-h) wakefulness, degrades human vigilance performance.
    McHill AW; Hull JT; Wang W; Czeisler CA; Klerman EB
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):6070-6075. PubMed ID: 29784810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can a mathematical model predict an individual's trait-like response to both total and partial sleep loss?
    Ramakrishnan S; Lu W; Laxminarayan S; Wesensten NJ; Rupp TL; Balkin TJ; Reifman J
    J Sleep Res; 2015 Jun; 24(3):262-9. PubMed ID: 25559055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time of day effects on neurobehavioral performance during chronic sleep restriction.
    Mollicone DJ; Van Dongen HP; Rogers NL; Banks S; Dinges DF
    Aviat Space Environ Med; 2010 Aug; 81(8):735-44. PubMed ID: 20681233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new mathematical model for the homeostatic effects of sleep loss on neurobehavioral performance.
    McCauley P; Kalachev LV; Smith AD; Belenky G; Dinges DF; Van Dongen HP
    J Theor Biol; 2009 Jan; 256(2):227-39. PubMed ID: 18938181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Neurocognitive Decline and Recovery During Repeated Cycles of Extended Sleep and Chronic Sleep Deficiency.
    St Hilaire MA; RĂ¼ger M; Fratelli F; Hull JT; Phillips AJ; Lockley SW
    Sleep; 2017 Jan; 40(1):. PubMed ID: 28364449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep deprivation enhances inter-stimulus interval effect on vigilant attention performance.
    Yang FN; Xu S; Chai Y; Basner M; Dinges DF; Rao H
    Sleep; 2018 Dec; 41(12):. PubMed ID: 30265364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trait-like vulnerability to total and partial sleep loss.
    Rupp TL; Wesensten NJ; Balkin TJ
    Sleep; 2012 Aug; 35(8):1163-72. PubMed ID: 22851812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Psychomotor vigilance task performance during and following chronic sleep restriction in rats.
    Deurveilher S; Bush JE; Rusak B; Eskes GA; Semba K
    Sleep; 2015 Apr; 38(4):515-28. PubMed ID: 25515100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    J Sleep Res; 2012 Feb; 21(1):40-9. PubMed ID: 21564364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat.
    Stephenson R; Caron AM; Famina S
    Sleep; 2015 May; 38(5):685-97. PubMed ID: 25669184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.