These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 26518739)
1. Multigene phylogeny of the red algal subclass Nemaliophycidae. Lam DW; Verbruggen H; Saunders GW; Vis ML Mol Phylogenet Evol; 2016 Jan; 94(Pt B):730-736. PubMed ID: 26518739 [TBL] [Abstract][Full Text] [Related]
2. A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the new red algal subclass Corallinophycidae. Le Gall L; Saunders GW Mol Phylogenet Evol; 2007 Jun; 43(3):1118-30. PubMed ID: 17197199 [TBL] [Abstract][Full Text] [Related]
3. Phylogenetic analyses of transcriptome data resolve familial assignments for genera of the red-algal Acrochaetiales-Palmariales Complex (Nemaliophycidae). Saunders GW; Jackson C; Salomaki ED Mol Phylogenet Evol; 2018 Feb; 119():151-159. PubMed ID: 29137957 [TBL] [Abstract][Full Text] [Related]
4. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168 [TBL] [Abstract][Full Text] [Related]
5. Plastid genome analysis of three Nemaliophycidae red algal species suggests environmental adaptation for iron limited habitats. Cho CH; Choi JW; Lam DW; Kim KM; Yoon HS PLoS One; 2018; 13(5):e0196995. PubMed ID: 29738547 [TBL] [Abstract][Full Text] [Related]
6. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Ragan MA; Bird CJ; Rice EL; Gutell RR; Murphy CA; Singh RK Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7276-80. PubMed ID: 8041780 [TBL] [Abstract][Full Text] [Related]
7. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. Freshwater DW; Fredericq S; Butler BS; Hommersand MH; Chase MW Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7281-5. PubMed ID: 8041781 [TBL] [Abstract][Full Text] [Related]
8. Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life. Verbruggen H; Maggs CA; Saunders GW; Le Gall L; Yoon HS; De Clerck O BMC Evol Biol; 2010 Jan; 10():16. PubMed ID: 20089168 [TBL] [Abstract][Full Text] [Related]
9. Chloroplast genomes as a tool to resolve red algal phylogenies: a case study in the Nemaliales. F Costa J; Lin SM; Macaya EC; Fernández-García C; Verbruggen H BMC Evol Biol; 2016 Oct; 16(1):205. PubMed ID: 27724867 [TBL] [Abstract][Full Text] [Related]
10. A novel phylogeny of the Gelidiales (Rhodophyta) based on five genes including the nuclear CesA, with descriptions of Orthogonacladia gen. nov. and Orthogonacladiaceae fam. nov. Boo GH; Le Gall L; Miller KA; Freshwater DW; Wernberg T; Terada R; Yoon KJ; Boo SM Mol Phylogenet Evol; 2016 Aug; 101():359-372. PubMed ID: 27223999 [TBL] [Abstract][Full Text] [Related]
11. Evaluating the phylogenetic signal limit from mitogenomes, slow evolving nuclear genes, and the concatenation approach. New insights into the Lacertini radiation using fast evolving nuclear genes and species trees. Mendes J; Harris DJ; Carranza S; Salvi D Mol Phylogenet Evol; 2016 Jul; 100():254-267. PubMed ID: 27095169 [TBL] [Abstract][Full Text] [Related]
12. Highly Conserved Mitochondrial Genomes among Multicellular Red Algae of the Florideophyceae. Yang EC; Kim KM; Kim SY; Lee J; Boo GH; Lee JH; Nelson WA; Yi G; Schmidt WE; Fredericq S; Boo SM; Bhattacharya D; Yoon HS Genome Biol Evol; 2015 Aug; 7(8):2394-406. PubMed ID: 26245677 [TBL] [Abstract][Full Text] [Related]
13. The nature of the ancestral red alga: inferences from a cladistic analysis. Gabrielson PW; Garbary DJ; Scagel RF Biosystems; 1985; 18(3-4):335-46. PubMed ID: 3910138 [TBL] [Abstract][Full Text] [Related]
14. Organization of plastid genomes in the freshwater red algal order Batrachospermales (Rhodophyta). Paiano MO; Del Cortona A; Costa JF; Liu SL; Verbruggen H; De Clerck O; Necchi O J Phycol; 2018 Feb; 54(1):25-33. PubMed ID: 29077982 [TBL] [Abstract][Full Text] [Related]
16. Increased sampling of both genes and taxa improves resolution of phylogenetic relationships within Magnoliidae, a large and early-diverging clade of angiosperms. Massoni J; Forest F; Sauquet H Mol Phylogenet Evol; 2014 Jan; 70():84-93. PubMed ID: 24055602 [TBL] [Abstract][Full Text] [Related]
17. Phylogenomics, divergence time estimation and trait evolution provide a new look into the Gracilariales (Rhodophyta). Lyra GM; Iha C; Grassa CJ; Cai L; Zhang H; Lane C; Blouin N; Oliveira MC; Nunes JMC; Davis CC Mol Phylogenet Evol; 2021 Dec; 165():107294. PubMed ID: 34419587 [TBL] [Abstract][Full Text] [Related]
18. Evolution: King-Size Plastid Genomes in a New Red Algal Clade. Moreira D; López-García P Curr Biol; 2017 Jul; 27(13):R651-R653. PubMed ID: 28697364 [TBL] [Abstract][Full Text] [Related]
19. Phylogeny of plastids based on cladistic analysis of gene loss inferred from complete plastid genome sequences. Nozaki H; Ohta N; Matsuzaki M; Misumi O; Kuroiwa T J Mol Evol; 2003 Oct; 57(4):377-82. PubMed ID: 14708571 [TBL] [Abstract][Full Text] [Related]
20. Radiation of the coralline red algae (Corallinophycidae, Rhodophyta) crown group as inferred from a multilocus time-calibrated phylogeny. Peña V; Vieira C; Braga JC; Aguirre J; Rösler A; Baele G; De Clerck O; Le Gall L Mol Phylogenet Evol; 2020 Sep; 150():106845. PubMed ID: 32360706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]