BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26519032)

  • 1. Lymph flow pattern in pleural diaphragmatic lymphatics during intrinsic and extrinsic isotonic contraction.
    Moriondo A; Solari E; Marcozzi C; Negrini D
    Am J Physiol Heart Circ Physiol; 2016 Jan; 310(1):H60-70. PubMed ID: 26519032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diaphragmatic lymphatic vessel behavior during local skeletal muscle contraction.
    Moriondo A; Solari E; Marcozzi C; Negrini D
    Am J Physiol Heart Circ Physiol; 2015 Feb; 308(3):H193-205. PubMed ID: 25485903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TRPV4 channels' dominant role in the temperature modulation of intrinsic contractility and lymph flow of rat diaphragmatic lymphatics.
    Solari E; Marcozzi C; Bistoletti M; Baj A; Giaroni C; Negrini D; Moriondo A
    Am J Physiol Heart Circ Physiol; 2020 Aug; 319(2):H507-H518. PubMed ID: 32706268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous activity in peripheral diaphragmatic lymphatic loops.
    Moriondo A; Solari E; Marcozzi C; Negrini D
    Am J Physiol Heart Circ Physiol; 2013 Oct; 305(7):H987-95. PubMed ID: 23893166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-dependent modulation of regional lymphatic contraction frequency and flow.
    Solari E; Marcozzi C; Negrini D; Moriondo A
    Am J Physiol Heart Circ Physiol; 2017 Nov; 313(5):H879-H889. PubMed ID: 28778912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of fluid flux in the rat diaphragmatic submesothelial lymphatic lacunae.
    Moriondo A; Bianchin F; Marcozzi C; Negrini D
    Am J Physiol Heart Circ Physiol; 2008 Sep; 295(3):H1182-H1190. PubMed ID: 18641277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional recruitment of rat diaphragmatic lymphatics in response to increased pleural or peritoneal fluid load.
    Moriondo A; Grimaldi A; Sciacca L; Guidali ML; Marcozzi C; Negrini D
    J Physiol; 2007 Mar; 579(Pt 3):835-47. PubMed ID: 17218349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperpolarization-activated cyclic nucleotide-gated channels in peripheral diaphragmatic lymphatics.
    Negrini D; Marcozzi C; Solari E; Bossi E; Cinquetti R; Reguzzoni M; Moriondo A
    Am J Physiol Heart Circ Physiol; 2016 Oct; 311(4):H892-H903. PubMed ID: 27496876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics.
    Dixon JB; Greiner ST; Gashev AA; Cote GL; Moore JE; Zawieja DC
    Microcirculation; 2006; 13(7):597-610. PubMed ID: 16990218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmural pressure during cardiogenic oscillations in rodent diaphragmatic lymphatic vessels.
    Negrini D; Moriondo A; Mukenge S
    Lymphat Res Biol; 2004; 2(2):69-81. PubMed ID: 15615488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels.
    Kornuta JA; Nepiyushchikh Z; Gasheva OY; Mukherjee A; Zawieja DC; Dixon JB
    Am J Physiol Regul Integr Comp Physiol; 2015 Nov; 309(9):R1122-34. PubMed ID: 26333787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximum shortening velocity of lymphatic muscle approaches that of striated muscle.
    Zhang R; Taucer AI; Gashev AA; Muthuchamy M; Zawieja DC; Davis MJ
    Am J Physiol Heart Circ Physiol; 2013 Nov; 305(10):H1494-507. PubMed ID: 23997104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute Exposure of Collecting Lymphatic Vessels to Low-Density Lipoproteins Increases Both Contraction Frequency and Lymph Flow: An
    Solari E; Marcozzi C; Bartolini B; Viola M; Negrini D; Moriondo A
    Lymphat Res Biol; 2020 Apr; 18(2):146-155. PubMed ID: 31526222
    [No Abstract]   [Full Text] [Related]  

  • 14. Lymphangion coordination minimally affects mean flow in lymphatic vessels.
    Venugopal AM; Stewart RH; Laine GA; Dongaonkar RM; Quick CM
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1183-9. PubMed ID: 17468331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lymphatic pumping: mechanics, mechanisms and malfunction.
    Scallan JP; Zawieja SD; Castorena-Gonzalez JA; Davis MJ
    J Physiol; 2016 Oct; 594(20):5749-5768. PubMed ID: 27219461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid Osmolarity Modulates the Rate of Spontaneous Contraction of Lymphatic Vessels and Lymph Flow by Means of a Cooperation between TRPV and VRAC Channels.
    Solari E; Marcozzi C; Negrini D; Moriondo A
    Biology (Basel); 2023 Jul; 12(7):. PubMed ID: 37508468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements.
    Macdonald AJ; Arkill KP; Tabor GR; McHale NG; Winlove CP
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H305-13. PubMed ID: 18487438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A one-dimensional mathematical model of collecting lymphatics coupled with an electro-fluid-mechanical contraction model and valve dynamics.
    Contarino C; Toro EF
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1687-1714. PubMed ID: 30006745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microlymphatics and lymph flow.
    Schmid-Schönbein GW
    Physiol Rev; 1990 Oct; 70(4):987-1028. PubMed ID: 2217560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological, Mechanical and Hydrodynamic Aspects of Diaphragmatic Lymphatics.
    Negrini D
    Biology (Basel); 2022 Dec; 11(12):. PubMed ID: 36552311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.