These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
595 related articles for article (PubMed ID: 26519060)
1. Molecular Pathways: Targeting IDO1 and Other Tryptophan Dioxygenases for Cancer Immunotherapy. Zhai L; Spranger S; Binder DC; Gritsina G; Lauing KL; Giles FJ; Wainwright DA Clin Cancer Res; 2015 Dec; 21(24):5427-33. PubMed ID: 26519060 [TBL] [Abstract][Full Text] [Related]
2. Tryptophan: A Rheostat of Cancer Immune Escape Mediated by Immunosuppressive Enzymes IDO1 and TDO. Kim M; Tomek P Front Immunol; 2021; 12():636081. PubMed ID: 33708223 [TBL] [Abstract][Full Text] [Related]
3. Heme-containing enzymes and inhibitors for tryptophan metabolism. Yan D; Lin YW; Tan X Metallomics; 2017 Sep; 9(9):1230-1240. PubMed ID: 28650043 [TBL] [Abstract][Full Text] [Related]
4. Targeting Tryptophan Catabolism in Cancer Immunotherapy Era: Challenges and Perspectives. Peyraud F; Guegan JP; Bodet D; Cousin S; Bessede A; Italiano A Front Immunol; 2022; 13():807271. PubMed ID: 35173722 [TBL] [Abstract][Full Text] [Related]
5. Quantification of IDO1 enzyme activity in normal and malignant tissues. Zhai L; Ladomersky E; Bell A; Dussold C; Cardoza K; Qian J; Lauing KL; Wainwright DA Methods Enzymol; 2019; 629():235-256. PubMed ID: 31727243 [TBL] [Abstract][Full Text] [Related]
6. The therapeutic potential of targeting tryptophan catabolism in cancer. Opitz CA; Somarribas Patterson LF; Mohapatra SR; Dewi DL; Sadik A; Platten M; Trump S Br J Cancer; 2020 Jan; 122(1):30-44. PubMed ID: 31819194 [TBL] [Abstract][Full Text] [Related]
7. Reimagining IDO Pathway Inhibition in Cancer Immunotherapy via Downstream Focus on the Tryptophan-Kynurenine-Aryl Hydrocarbon Axis. Labadie BW; Bao R; Luke JJ Clin Cancer Res; 2019 Mar; 25(5):1462-1471. PubMed ID: 30377198 [TBL] [Abstract][Full Text] [Related]
8. Targeting key dioxygenases in tryptophan-kynurenine metabolism for immunomodulation and cancer chemotherapy. Austin CJ; Rendina LM Drug Discov Today; 2015 May; 20(5):609-17. PubMed ID: 25478733 [TBL] [Abstract][Full Text] [Related]
9. Targeting the IDO1 pathway in cancer: from bench to bedside. Liu M; Wang X; Wang L; Ma X; Gong Z; Zhang S; Li Y J Hematol Oncol; 2018 Aug; 11(1):100. PubMed ID: 30068361 [TBL] [Abstract][Full Text] [Related]
10. Tryptophan 2,3-dioxygenase in tumor cells is associated with resistance to immunotherapy in renal cell carcinoma. Sumitomo M; Takahara K; Zennami K; Nagakawa T; Maeda Y; Shiogama K; Yamamoto Y; Muto Y; Nukaya T; Takenaka M; Fukaya K; Ichino M; Sasaki H; Saito K; Shiroki R Cancer Sci; 2021 Mar; 112(3):1038-1047. PubMed ID: 33410234 [TBL] [Abstract][Full Text] [Related]
11. Targeting Indoleamine Dioxygenase and Tryptophan Dioxygenase in Cancer Immunotherapy: Clinical Progress and Challenges. Peng X; Zhao Z; Liu L; Bai L; Tong R; Yang H; Zhong L Drug Des Devel Ther; 2022; 16():2639-2657. PubMed ID: 35965963 [TBL] [Abstract][Full Text] [Related]
12. Targeting the IDO1/TDO2-KYN-AhR Pathway for Cancer Immunotherapy - Challenges and Opportunities. Cheong JE; Sun L Trends Pharmacol Sci; 2018 Mar; 39(3):307-325. PubMed ID: 29254698 [TBL] [Abstract][Full Text] [Related]
13. IDO1/TDO dual inhibitor RY103 targets Kyn-AhR pathway and exhibits preclinical efficacy on pancreatic cancer. Liang H; Li T; Fang X; Xing Z; Zhang S; Shi L; Li W; Guo L; Kuang C; Liu H; Yang Q Cancer Lett; 2021 Dec; 522():32-43. PubMed ID: 34520819 [TBL] [Abstract][Full Text] [Related]
14. Yang D; Zhang S; Fang X; Guo L; Hu N; Guo Z; Li X; Yang S; He JC; Kuang C; Yang Q J Med Chem; 2019 Oct; 62(20):9161-9174. PubMed ID: 31580660 [TBL] [Abstract][Full Text] [Related]
15. A highly efficient modality to block the degradation of tryptophan for cancer immunotherapy: locked nucleic acid-modified antisense oligonucleotides to inhibit human indoleamine 2,3-dioxygenase 1/tryptophan 2,3-dioxygenase expression. Klar R; Michel S; Schell M; Hinterwimmer L; Zippelius A; Jaschinski F Cancer Immunol Immunother; 2020 Jan; 69(1):57-67. PubMed ID: 31802183 [TBL] [Abstract][Full Text] [Related]
16. Evaluation and comparison of the commonly used bioassays of human indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO). Zhang S; Guo L; Yang D; Xing Z; Li W; Kuang C; Yang Q Bioorg Chem; 2020 Nov; 104():104348. PubMed ID: 33142415 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and in vivo antitumor evaluation of an orally active potent phosphonamidate derivative targeting IDO1/IDO2/TDO. Feng X; Shen P; Wang Y; Li Z; Bian J Biochem Pharmacol; 2019 Oct; 168():214-223. PubMed ID: 31306643 [TBL] [Abstract][Full Text] [Related]
18. Both IDO1 and TDO contribute to the malignancy of gliomas via the Kyn-AhR-AQP4 signaling pathway. Du L; Xing Z; Tao B; Li T; Yang D; Li W; Zheng Y; Kuang C; Yang Q Signal Transduct Target Ther; 2020 Feb; 5(1):10. PubMed ID: 32296044 [TBL] [Abstract][Full Text] [Related]
19. Characterization and evolution of vertebrate indoleamine 2, 3-dioxygenases IDOs from monotremes and marsupials. Yuasa HJ; Ball HJ; Ho YF; Austin CJ; Whittington CM; Belov K; Maghzal GJ; Jermiin LS; Hunt NH Comp Biochem Physiol B Biochem Mol Biol; 2009 Jun; 153(2):137-44. PubMed ID: 19402226 [TBL] [Abstract][Full Text] [Related]
20. Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer. Prendergast GC; Malachowski WJ; Mondal A; Scherle P; Muller AJ Int Rev Cell Mol Biol; 2018; 336():175-203. PubMed ID: 29413890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]