These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26519414)

  • 1. Finding and Characterizing Repeats in Plant Genomes.
    Nicolas J; Peterlongo P; Tempel S
    Methods Mol Biol; 2016; 1374():293-337. PubMed ID: 26519414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finding and Characterizing Repeats in Plant Genomes.
    Nicolas J; Tempel S; Fiston-Lavier AS; Cherif E
    Methods Mol Biol; 2022; 2443():327-385. PubMed ID: 35037215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly and comparative analysis of transposable elements from low coverage genomic sequence data in Asparagales.
    Hertweck KL
    Genome; 2013 Sep; 56(9):487-94. PubMed ID: 24168669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RepeatAround: a software tool for finding and visualizing repeats in circular genomes and its application to a human mtDNA database.
    Goios A; Meirinhos J; Rocha R; Lopes R; Amorim A; Pereira L
    Mitochondrion; 2006 Aug; 6(4):218-24. PubMed ID: 16854633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes.
    Kurtz S; Narechania A; Stein JC; Ware D
    BMC Genomics; 2008 Oct; 9():517. PubMed ID: 18976482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Computational approaches for identification and classification of transposable elements in eukaryotic genomes].
    Xu HE; Zhang HH; Han MJ; Shen YH; Huang XZ; Xiang ZH; Zhang Z
    Yi Chuan; 2012 Aug; 34(8):1009-19. PubMed ID: 22917906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FLAGdb
    Tamby JP; Brunaud V
    Methods Mol Biol; 2017; 1533():79-101. PubMed ID: 27987165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A survey of bacterial insertion sequences using IScan.
    Wagner A; Lewis C; Bichsel M
    Nucleic Acids Res; 2007; 35(16):5284-93. PubMed ID: 17686783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale genomic correlations in Arabidopsis thaliana relate to chromosomal structure.
    Kendal WS; Suomela BP
    BMC Genomics; 2005 Jun; 6():82. PubMed ID: 15932642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale.
    Girgis HZ
    BMC Bioinformatics; 2015 Jul; 16():227. PubMed ID: 26206263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. To detect and analyze sequence repeats whatever be their origin.
    Nicolas J
    Methods Mol Biol; 2012; 859():69-90. PubMed ID: 22367866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs.
    Lerat E
    Heredity (Edinb); 2010 Jun; 104(6):520-33. PubMed ID: 19935826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PILER: identification and classification of genomic repeats.
    Edgar RC; Myers EW
    Bioinformatics; 2005 Jun; 21 Suppl 1():i152-8. PubMed ID: 15961452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TEclass--a tool for automated classification of unknown eukaryotic transposable elements.
    Abrusán G; Grundmann N; DeMester L; Makalowski W
    Bioinformatics; 2009 May; 25(10):1329-30. PubMed ID: 19349283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A clustering method for repeat analysis in DNA sequences.
    Volfovsky N; Haas BJ; Salzberg SL
    Genome Biol; 2001; 2(8):RESEARCH0027. PubMed ID: 11532211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient computation of all perfect repeats in genomic sequences of up to half a gigabyte, with a case study on the human genome.
    Becher V; Deymonnaz A; Heiber P
    Bioinformatics; 2009 Jul; 25(14):1746-53. PubMed ID: 19451169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HomologMiner: looking for homologous genomic groups in whole genomes.
    Hou M; Berman P; Hsu CH; Harris RS
    Bioinformatics; 2007 Apr; 23(8):917-25. PubMed ID: 17308341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel genome-scale repeat finder geared towards transposons.
    Li X; Kahveci T; Settles AM
    Bioinformatics; 2008 Feb; 24(4):468-76. PubMed ID: 18089620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RepEx: repeat extractor for biological sequences.
    Gurusaran M; Ravella D; Sekar K
    Genomics; 2013 Oct; 102(4):403-8. PubMed ID: 23880222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and annotation of repetitive sequences in fungal genomes.
    Dhillon B; Goodwin SB
    Methods Mol Biol; 2011; 722():33-50. PubMed ID: 21590411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.