These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26519568)

  • 1. Direct and indirect effects of climate change on projected future fire regimes in the western United States.
    Liu Z; Wimberly MC
    Sci Total Environ; 2016 Jan; 542(Pt A):65-75. PubMed ID: 26519568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Landscape development, forest fires, and wilderness management.
    Wright HE
    Science; 1974 Nov; 186(4163):487-95. PubMed ID: 17790369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003.
    Littell JS; McKenzie D; Peterson DL; Westerling AL
    Ecol Appl; 2009 Jun; 19(4):1003-21. PubMed ID: 19544740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States.
    Liu Z; Wimberly MC
    PLoS One; 2015; 10(10):e0140839. PubMed ID: 26465959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semiarid forests.
    O'Donnell FC; Flatley WT; Springer AE; Fulé PZ
    Ecol Appl; 2018 Sep; 28(6):1459-1472. PubMed ID: 29939455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon dynamics of forests in Washington, U.S.A.: 21st century projections based on climate-driven changes in fire regimes.
    Raymond CL; McKenzie D
    Ecol Appl; 2012 Jul; 22(5):1589-611. PubMed ID: 22908716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests.
    Brubaker LB; Higuera PE; Rupp TS; Olson MA; Anderson PM; Hu FS
    Ecology; 2009 Jul; 90(7):1788-801. PubMed ID: 19694128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century.
    Westerling AL; Turner MG; Smithwick EA; Romme WH; Ryan MG
    Proc Natl Acad Sci U S A; 2011 Aug; 108(32):13165-70. PubMed ID: 21788495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fire regime zonation under current and future climate over eastern Canada.
    Boulanger Y; Gauthier S; Gray DR; Le Goff H; Lefort P; Morissette J
    Ecol Appl; 2013 Jun; 23(4):904-23. PubMed ID: 23865239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fire as the dominant driver of central Canadian boreal forest carbon balance.
    Bond-Lamberty B; Peckham SD; Ahl DE; Gower ST
    Nature; 2007 Nov; 450(7166):89-92. PubMed ID: 17972883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduced annual grass increases regional fire activity across the arid western USA (1980-2009).
    Balch JK; Bradley BA; D'Antonio CM; Gómez-Dans J
    Glob Chang Biol; 2013 Jan; 19(1):173-83. PubMed ID: 23504729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping future fire probability under climate change: Does vegetation matter?
    Syphard AD; Sheehan T; Rustigian-Romsos H; Ferschweiler K
    PLoS One; 2018; 13(8):e0201680. PubMed ID: 30080880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is climate an important driver of post-European vegetation change in the Eastern United States?
    Nowacki GJ; Abrams MD
    Glob Chang Biol; 2015 Jan; 21(1):314-34. PubMed ID: 24953341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vegetation-fire feedback reduces projected area burned under climate change.
    Hurteau MD; Liang S; Westerling AL; Wiedinmyer C
    Sci Rep; 2019 Feb; 9(1):2838. PubMed ID: 30808990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?
    Haslem A; Leonard SW; Bruce MJ; Christie F; Holland GJ; Kelly LT; MacHunter J; Bennett AF; Clarke MF; York A
    Ecol Appl; 2016 Dec; 26(8):2412-2421. PubMed ID: 27907257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA.
    Cansler CA; McKenzie D
    Ecol Appl; 2014 Jul; 24(5):1037-56. PubMed ID: 25154095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of biotic feedback and harvest management on boreal forest fire activity under climate change.
    Krawchuk MA; Cumming SG
    Ecol Appl; 2011 Jan; 21(1):122-36. PubMed ID: 21516892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of climate and fire on short-term vegetation recovery in the boreal larch forests of Northeastern China.
    Liu Z
    Sci Rep; 2016 Nov; 6():37572. PubMed ID: 27857204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change, wildfire, and vegetation shifts in a high-inertia forest landscape: Western Washington, U.S.A.
    Halofsky JS; Conklin DR; Donato DC; Halofsky JE; Kim JB
    PLoS One; 2018; 13(12):e0209490. PubMed ID: 30571775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Drivers of human-caused fire occurrence and its variation trend under climate change in the Great Xing'an Mountains, Northeast China].
    Li S; Wu ZW; Liang Y; He HS
    Ying Yong Sheng Tai Xue Bao; 2017 Jan; 28(1):210-218. PubMed ID: 29749205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.