These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 26519820)
1. Short-term response to waterlogging in Quercus petraea and Quercus robur: A study of the root hydraulic responses and the transcriptional pattern of aquaporins. Rasheed-Depardieu C; Parelle J; Tatin-Froux F; Parent C; Capelli N Plant Physiol Biochem; 2015 Dec; 97():323-30. PubMed ID: 26519820 [TBL] [Abstract][Full Text] [Related]
2. Intra- and interspecific diversity in the response to waterlogging of two co-occurring white oak species (Quercus robur and Q. petraea). Parelle J; Brendel O; Jolivet Y; Dreyer E Tree Physiol; 2007 Jul; 27(7):1027-34. PubMed ID: 17403656 [TBL] [Abstract][Full Text] [Related]
3. Implication of the suberin pathway in adaptation to waterlogging and hypertrophied lenticels formation in pedunculate oak (Quercus robur L.). Le Provost G; Lesur I; Lalanne C; Da Silva C; Labadie K; Aury JM; Leple JC; Plomion C Tree Physiol; 2016 Nov; 36(11):1330-1342. PubMed ID: 27358207 [TBL] [Abstract][Full Text] [Related]
4. Role of waterlogging-responsive genes in shaping interspecific differentiation between two sympatric oak species. Le Provost G; Sulmon C; Frigerio JM; Bodénès C; Kremer A; Plomion C Tree Physiol; 2012 Feb; 32(2):119-34. PubMed ID: 22170438 [TBL] [Abstract][Full Text] [Related]
5. Identification and expression of nine oak aquaporin genes in the primary root axis of two oak species, Quercus petraea and Quercus robur. Rasheed-Depardieu C; Parent C; Crèvecoeur M; Parelle J; Tatin-Froux F; Le Provost G; Capelli N PLoS One; 2012; 7(12):e51838. PubMed ID: 23284785 [TBL] [Abstract][Full Text] [Related]
6. Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses. Qian ZJ; Song JJ; Chaumont F; Ye Q Plant Cell Environ; 2015 Mar; 38(3):461-73. PubMed ID: 24601940 [TBL] [Abstract][Full Text] [Related]
7. Comparison of water-use efficiency of seedlings from two sympatric oak species: genotype x environment interactions. Ponton S; Dupouey JL; Bréda N; Dreyer E Tree Physiol; 2002 Apr; 22(6):413-22. PubMed ID: 11960766 [TBL] [Abstract][Full Text] [Related]
8. Contrasting growth and adaptive responses of two oak species to flooding stress: role of non-symbiotic haemoglobin. Parent C; Crèvecoeur M; Capelli N; Dat JF Plant Cell Environ; 2011 Jul; 34(7):1113-26. PubMed ID: 21410709 [TBL] [Abstract][Full Text] [Related]
9. Identification of adaptation-specific differences in mRNA expression of sessile and pedunculate oak based on osmotic-stress-induced genes. Porth I; Koch M; Berenyi M; Burg A; Burg K Tree Physiol; 2005 Oct; 25(10):1317-29. PubMed ID: 16076780 [TBL] [Abstract][Full Text] [Related]
10. Water transport properties of root cells contribute to salt tolerance in halophytic grasses Poa juncifolia and Puccinellia nuttalliana. Vaziriyeganeh M; Lee SH; Zwiazek JJ Plant Sci; 2018 Nov; 276():54-62. PubMed ID: 30348328 [TBL] [Abstract][Full Text] [Related]
11. A novel nonsymbiotic hemoglobin from oak: cellular and tissue specificity of gene expression. Parent C; Berger A; Folzer H; Dat J; Crevècoeur M; Badot PM; Capelli N New Phytol; 2008; 177(1):142-154. PubMed ID: 17986182 [TBL] [Abstract][Full Text] [Related]
12. Aquaporin gene expression and apoplastic water flow in bur oak (Quercus macrocarpa) leaves in relation to the light response of leaf hydraulic conductance. Voicu MC; Cooke JE; Zwiazek JJ J Exp Bot; 2009; 60(14):4063-75. PubMed ID: 19651684 [TBL] [Abstract][Full Text] [Related]
13. Response of sessile oak seedlings (Quercus petraea) to flooding: an integrated study. Folzer H; Dat JF; Capelli N; Rieffel D; Badot PM Tree Physiol; 2006 Jun; 26(6):759-66. PubMed ID: 16510391 [TBL] [Abstract][Full Text] [Related]
14. Potential vulnerability of oak forests to climate change-induced flooding: effects of mild oxygen deficiency on Quercus robur and Quercus petraea seedling physiology. Bourgeade P; Bourioug M; Macor S; Alaoui-Sossé L; Alaoui-Sossé B; Aleya L Environ Sci Pollut Res Int; 2018 Feb; 25(6):5550-5557. PubMed ID: 29218580 [TBL] [Abstract][Full Text] [Related]
15. Light-mediated K(leaf) induction and contribution of both the PIP1s and PIP2s aquaporins in five tree species: walnut (Juglans regia) case study. Baaziz KB; Lopez D; Rabot A; Combes D; Gousset A; Bouzid S; Cochard H; Sakr S; Venisse JS Tree Physiol; 2012 Apr; 32(4):423-34. PubMed ID: 22544048 [TBL] [Abstract][Full Text] [Related]
16. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.). Grondin A; Mauleon R; Vadez V; Henry A Plant Cell Environ; 2016 Feb; 39(2):347-65. PubMed ID: 26226878 [TBL] [Abstract][Full Text] [Related]
17. Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1. Li G; Tillard P; Gojon A; Maurel C Plant Cell Physiol; 2016 Apr; 57(4):733-42. PubMed ID: 26823528 [TBL] [Abstract][Full Text] [Related]
18. Hydraulic conductivity and aquaporin transcription in roots of trembling aspen (Populus tremuloides) seedlings colonized by Laccaria bicolor. Xu H; Cooke JE; Kemppainen M; Pardo AG; Zwiazek JJ Mycorrhiza; 2016 Jul; 26(5):441-51. PubMed ID: 26861480 [TBL] [Abstract][Full Text] [Related]
19. Responses of two closely related oak species, Quercus robur and Q. petraea, to excess manganese concentrations in the rooting medium. Thomas FM; Sprenger S Tree Physiol; 2008 Mar; 28(3):343-53. PubMed ID: 18171658 [TBL] [Abstract][Full Text] [Related]
20. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding. Calvo-Polanco M; Señorans J; Zwiazek JJ BMC Plant Biol; 2012 Jun; 12():99. PubMed ID: 22738296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]