These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26519822)

  • 1. Contribution of the finite volume point dilution method for measurement of groundwater fluxes in a fractured aquifer.
    Jamin P; Goderniaux P; Bour O; Le Borgne T; Englert A; Longuevergne L; Brouyère S
    J Contam Hydrol; 2015 Nov; 182():244-55. PubMed ID: 26519822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring transient groundwater fluxes using the Finite Volume Point Dilution Method.
    Jamin P; Brouyère S
    J Contam Hydrol; 2018 Nov; 218():10-18. PubMed ID: 30195886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new discrete model to better consider tracer distribution along boreholes during the Finite Volume Point Dilution Method.
    Simon N; Brouyère S; Jamin P
    J Contam Hydrol; 2023 Jul; 257():104203. PubMed ID: 37290348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving estimates of groundwater velocity in a fractured rock borehole using hydraulic and tracer dilution methods.
    Maldaner CH; Quinn PM; Cherry JA; Parker BL
    J Contam Hydrol; 2018 Jul; 214():75-86. PubMed ID: 29907430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new tracer technique for monitoring groundwater fluxes: the Finite Volume Point Dilution Method.
    Brouyère S; Batlle-Aguilar J; Goderniaux P; Dassargues A
    J Contam Hydrol; 2008 Jan; 95(3-4):121-40. PubMed ID: 17949849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Groundwater flow velocities in a fractured carbonate aquifer-type: Implications for contaminant transport.
    Medici G; West LJ; Banwart SA
    J Contam Hydrol; 2019 Apr; 222():1-16. PubMed ID: 30795856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model.
    Abusaada M; Sauter M
    Ground Water; 2013; 51(4):641-50. PubMed ID: 23039080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrate dynamics in agricultural catchments deduced from groundwater dating and long-term nitrate monitoring in surface- and groundwaters.
    Aquilina L; Vergnaud-Ayraud V; Labasque T; Bour O; Molénat J; Ruiz L; de Montety V; De Ridder J; Roques C; Longuevergne L
    Sci Total Environ; 2012 Oct; 435-436():167-78. PubMed ID: 22854088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting a Defective Casing Seal at the Top of a Bedrock Aquifer.
    Richard SK; Chesnaux R; Rouleau A
    Ground Water; 2016 Mar; 54(2):296-303. PubMed ID: 26212855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a new device to quantify groundwater-surface water exchange.
    Cremeans MM; Devlin JF
    J Contam Hydrol; 2017 Nov; 206():75-80. PubMed ID: 29050851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle Swarm Optimization for inverse modeling of solute transport in fractured gneiss aquifer.
    Abdelaziz R; Zambrano-Bigiarini M
    J Contam Hydrol; 2014 Aug; 164():285-98. PubMed ID: 25035936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity analyses of the theoretical equations used in point velocity probe (PVP) data interpretation.
    Devlin JF
    J Contam Hydrol; 2016 Sep; 192():140-145. PubMed ID: 27454892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of contaminant transport in fractured carbonate aquifer types: a case study of the Permian Magnesian Limestone Group (NE England, UK).
    Medici G; West LJ; Chapman PJ; Banwart SA
    Environ Sci Pollut Res Int; 2019 Aug; 26(24):24863-24884. PubMed ID: 31240647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for TiO2 nanoparticle transfer in a hard-rock aquifer.
    Cary L; Pauwels H; Ollivier P; Picot G; Leroy P; Mougin B; Braibant G; Labille J
    J Contam Hydrol; 2015 Aug; 179():148-59. PubMed ID: 26140852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioremediation in Fractured Rock: 1. Modeling to Inform Design, Monitoring, and Expectations.
    Tiedeman CR; Shapiro AM; Hsieh PA; Imbrigiotta TE; Goode DJ; Lacombe PJ; DeFlaun MF; Drew SR; Johnson CD; Williams JH; Curtis GP
    Ground Water; 2018 Mar; 56(2):300-316. PubMed ID: 28873502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing streambed hydraulic conductivity and their implications on stream-aquifer interaction: a conceptual review.
    Naganna SR; Deka PC; Ch S; Hansen WF
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):24765-24789. PubMed ID: 28988330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing flow pathways in a sandstone aquifer: Tectonic vs sedimentary heterogeneities.
    Medici G; West LJ; Mountney NP
    J Contam Hydrol; 2016 Nov; 194():36-58. PubMed ID: 27969550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A correction on coastal heads for groundwater flow models.
    Lu C; Werner AD; Simmons CT; Luo J
    Ground Water; 2015; 53(1):164-70. PubMed ID: 24571623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractional flow in fractured chalk; a flow and tracer test revisited.
    Odling NE; West LJ; Hartmann S; Kilpatrick A
    J Contam Hydrol; 2013 Apr; 147():96-111. PubMed ID: 23501945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow-Through Stream Modeling with MODFLOW and MT3D: Certainties and Limitations.
    Ben Simon R; Bernard S; Meurville C; Rebour V
    Ground Water; 2015; 53(6):967-71. PubMed ID: 25557038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.