These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26519889)

  • 1. In the eye of the beholder: A simulator study of the impact of Google Glass on driving performance.
    Young KL; Stephens AN; Stephan KL; Stuart GW
    Accid Anal Prev; 2016 Jan; 86():68-75. PubMed ID: 26519889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Texting while driving using Google Glass™: Promising but not distraction-free.
    He J; Choi W; McCarley JS; Chaparro BS; Wang C
    Accid Anal Prev; 2015 Aug; 81():218-29. PubMed ID: 26024837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does wearable device bring distraction closer to drivers? Comparing smartphones and Google Glass.
    He J; McCarley JS; Crager K; Jadliwala M; Hua L; Huang S
    Appl Ergon; 2018 Jul; 70():156-166. PubMed ID: 29866306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reading text while driving: understanding drivers' strategic and tactical adaptation to distraction.
    Liang Y; Horrey WJ; Hoffman JD
    Hum Factors; 2015 Mar; 57(2):347-59. PubMed ID: 25850162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is take-over time all that matters? The impact of visual-cognitive load on driver take-over quality after conditionally automated driving.
    Zeeb K; Buchner A; Schrauf M
    Accid Anal Prev; 2016 Jul; 92():230-9. PubMed ID: 27107472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Google glass: a driver distraction cause or cure?
    Sawyer BD; Finomore VS; Calvo AA; Hancock PA
    Hum Factors; 2014 Nov; 56(7):1307-21. PubMed ID: 25490810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driving While Interacting With Google Glass: Investigating the Combined Effect of Head-Up Display and Hands-Free Input on Driving Safety and Multitask Performance.
    Tippey KG; Sivaraj E; Ferris TK
    Hum Factors; 2017 Jun; 59(4):671-688. PubMed ID: 28186420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Driver distraction by smartphone use (WhatsApp) in different age groups.
    Ortiz C; Ortiz-Peregrina S; Castro JJ; Casares-López M; Salas C
    Accid Anal Prev; 2018 Aug; 117():239-249. PubMed ID: 29723735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does attention capacity moderate the effect of driver distraction in older drivers?
    Cuenen A; Jongen EM; Brijs T; Brijs K; Lutin M; Van Vlierden K; Wets G
    Accid Anal Prev; 2015 Apr; 77():12-20. PubMed ID: 25667202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Driving context influences drivers' decision to engage in visual-manual phone tasks: Evidence from a naturalistic driving study.
    Tivesten E; Dozza M
    J Safety Res; 2015 Jun; 53():87-96. PubMed ID: 25934001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of texting on driving performance in a driving simulator: the influence of driver age.
    Rumschlag G; Palumbo T; Martin A; Head D; George R; Commissaris RL
    Accid Anal Prev; 2015 Jan; 74():145-9. PubMed ID: 25463954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post and during event effect of cell phone talking and texting on driving performance--a driving simulator study.
    Thapa R; Codjoe J; Ishak S; McCarter KS
    Traffic Inj Prev; 2015; 16(5):461-7. PubMed ID: 25288040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing the demands of destination entry using Google Glass and the Samsung Galaxy S4 during simulated driving.
    Beckers N; Schreiner S; Bertrand P; Mehler B; Reimer B
    Appl Ergon; 2017 Jan; 58():25-34. PubMed ID: 27633195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing drivers' visual attention at Junctions in Real and Simulated Environments.
    Robbins CJ; Allen HA; Chapman P
    Appl Ergon; 2019 Oct; 80():89-101. PubMed ID: 31280814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driver distraction and in-vehicle interventions: A driving simulator study on visual attention and driving performance.
    Ezzati Amini R; Al Haddad C; Batabyal D; Gkena I; De Vos B; Cuenen A; Brijs T; Antoniou C
    Accid Anal Prev; 2023 Oct; 191():107195. PubMed ID: 37441985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of text messaging on young drivers.
    Hosking SG; Young KL; Regan MA
    Hum Factors; 2009 Aug; 51(4):582-92. PubMed ID: 19899366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Driving behaviour while self-regulating mobile phone interactions: A human-machine system approach.
    Oviedo-Trespalacios O; Haque MM; King M; Demmel S
    Accid Anal Prev; 2018 Sep; 118():253-262. PubMed ID: 29653674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proactive vs. reactive car driving: EEG evidence for different driving strategies of older drivers.
    Karthaus M; Wascher E; Getzmann S
    PLoS One; 2018; 13(1):e0191500. PubMed ID: 29352314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relative impact of smartwatch and smartphone use while driving on workload, attention, and driving performance.
    Perlman D; Samost A; Domel AG; Mehler B; Dobres J; Reimer B
    Appl Ergon; 2019 Feb; 75():8-16. PubMed ID: 30509540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Driver's adaptive glance behavior to in-vehicle information systems.
    Peng Y; Boyle LN
    Accid Anal Prev; 2015 Dec; 85():93-101. PubMed ID: 26406538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.