BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 26519906)

  • 1. Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of bipedal walking.
    Sun S; Huang Y; Wang Q
    J Theor Biol; 2016 Jan; 388():108-18. PubMed ID: 26519906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of toe joint stiffness and toe shape on walking biomechanics.
    Honert EC; Bastas G; Zelik KE
    Bioinspir Biomim; 2018 Oct; 13(6):066007. PubMed ID: 30187893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ankle torque control that shifts the center of pressure from heel to toe contributes non-zero sagittal plane angular momentum during human walking.
    Gruben KG; Boehm WL
    J Biomech; 2014 Apr; 47(6):1389-94. PubMed ID: 24524989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of muscle-tendon function in human walking at self-selected speed.
    Endo K; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):352-62. PubMed ID: 24608689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Role and movement of the toes during walking].
    Miyazaki M
    Nihon Seikeigeka Gakkai Zasshi; 1993 Jul; 67(7):606-16. PubMed ID: 8409631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.
    Huang TW; Shorter KA; Adamczyk PG; Kuo AD
    J Exp Biol; 2015 Nov; 218(Pt 22):3541-50. PubMed ID: 26385330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of toe length, foot arch length and toe joint axis on walking biomechanics.
    Honert EC; Bastas G; Zelik KE
    Hum Mov Sci; 2020 Apr; 70():102594. PubMed ID: 32217212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of including a mobile arch, toe joint, and joint coupling on predictive neuromuscular simulations of human walking.
    Buchmann A; Wenzler S; Welte L; Renjewski D
    Sci Rep; 2024 Jun; 14(1):14879. PubMed ID: 38937584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foot and ankle characteristics of children with an idiopathic toe-walking gait.
    Williams C; Tinley PD; Curtin M; Nielsen S
    J Am Podiatr Med Assoc; 2013; 103(5):374-9. PubMed ID: 24072365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking.
    Neptune RR; Kautz SA; Zajac FE
    J Biomech; 2001 Nov; 34(11):1387-98. PubMed ID: 11672713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The utility of normative foot floor angle data in assessing toe-walking.
    Vette AH; Watt JM; Lewicke J; Watkins B; Burkholder LM; Andersen J; Jhangri GS; Dulai S
    Foot (Edinb); 2018 Dec; 37():65-70. PubMed ID: 30326414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ankle stiffness on gait selection of dynamic bipedal walking with flat feet.
    Huang Y; Wang Q; Chen B; Wang L
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975446. PubMed ID: 22275646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presenting joint kinematics of human locomotion using phase plane portraits and Poincaré maps.
    Hurmuzlu Y; Basdogan C; Carollo JJ
    J Biomech; 1994 Dec; 27(12):1495-9. PubMed ID: 7528748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking.
    Koopman B; Grootenboer HJ; de Jongh HJ
    J Biomech; 1995 Nov; 28(11):1369-76. PubMed ID: 8522549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired heel to toe progression during gait is related to reduced ankle range of motion in people with Multiple Sclerosis.
    Psarakis M; Greene D; Moresi M; Baker M; Stubbs P; Brodie M; Lord S; Hoang P
    Clin Biomech (Bristol, Avon); 2017 Nov; 49():96-100. PubMed ID: 28898816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neuromuscular demands of toe walking: a forward dynamics simulation analysis.
    Neptune RR; Burnfield JM; Mulroy SJ
    J Biomech; 2007; 40(6):1293-300. PubMed ID: 16842801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human foot and heel-sole-toe walking strategy: a mechanism enabling an inverted pendular gait with low isometric muscle force?
    Usherwood JR; Channon AJ; Myatt JP; Rankin JW; Hubel TY
    J R Soc Interface; 2012 Oct; 9(75):2396-402. PubMed ID: 22572024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Placing the trailing foot closer to an obstacle reduces flexion of the hip, knee, and ankle to increase the risk of tripping.
    Chou LS; Draganich LF
    J Biomech; 1998 Aug; 31(8):685-91. PubMed ID: 9796668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of neural and biomechanical impairments leading to pathological toe and heel gaits using neuromusculoskeletal modelling.
    Bruel A; Ghorbel SB; Di Russo A; Stanev D; Armand S; Courtine G; Ijspeert A
    J Physiol; 2022 Jun; 600(11):2691-2712. PubMed ID: 35442531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.