These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 26520073)
1. On the statistical and transport properties of a non-dissipative Fermi-Ulam model. Livorati AL; Dettmann CP; Caldas IL; Leonel ED Chaos; 2015 Oct; 25(10):103107. PubMed ID: 26520073 [TBL] [Abstract][Full Text] [Related]
2. Scaling invariance of the diffusion coefficient in a family of two-dimensional Hamiltonian mappings. de Oliveira JA; Dettmann CP; da Costa DR; Leonel ED Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062904. PubMed ID: 23848745 [TBL] [Abstract][Full Text] [Related]
3. A consistent approach for the treatment of Fermi acceleration in time-dependent billiards. Karlis AK; Diakonos FK; Constantoudis V Chaos; 2012 Jun; 22(2):026120. PubMed ID: 22757579 [TBL] [Abstract][Full Text] [Related]
4. Hyperacceleration in a stochastic Fermi-Ulam model. Karlis AK; Papachristou PK; Diakonos FK; Constantoudis V; Schmelcher P Phys Rev Lett; 2006 Nov; 97(19):194102. PubMed ID: 17155634 [TBL] [Abstract][Full Text] [Related]
5. Rare events and their impact on velocity diffusion in a stochastic Fermi-Ulam model. Karlis AK; Diakonos FK; Constantoudis V; Schmelcher P Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046213. PubMed ID: 18999514 [TBL] [Abstract][Full Text] [Related]
6. Decay of energy and suppression of Fermi acceleration in a dissipative driven stadium-like billiard. Livorati AL; Caldas IL; Leonel ED Chaos; 2012 Jun; 22(2):026122. PubMed ID: 22757581 [TBL] [Abstract][Full Text] [Related]
7. Stickiness in a bouncer model: A slowing mechanism for Fermi acceleration. Livorati AL; Kroetz T; Dettmann CP; Caldas IL; Leonel ED Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036203. PubMed ID: 23030993 [TBL] [Abstract][Full Text] [Related]
8. Transition from normal to ballistic diffusion in a one-dimensional impact system. Livorati ALP; Kroetz T; Dettmann CP; Caldas IL; Leonel ED Phys Rev E; 2018 Mar; 97(3-1):032205. PubMed ID: 29776143 [TBL] [Abstract][Full Text] [Related]
9. Fermi acceleration in chaotic shape-preserving billiards. Batistić B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022912. PubMed ID: 25353550 [TBL] [Abstract][Full Text] [Related]
10. Transport of chaotic trajectories from regions distant from or near to structures of regular motion of the Fermi-Ulam model. de Faria NB; Tavares DS; de Paula WC; Leonel ED; Ladeira DG Phys Rev E; 2016 Oct; 94(4-1):042208. PubMed ID: 27841619 [TBL] [Abstract][Full Text] [Related]
11. Time-dependent properties of a simplified Fermi-Ulam accelerator model. Ladeira DG; da Silva JK Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026201. PubMed ID: 16605423 [TBL] [Abstract][Full Text] [Related]
12. Scaling investigation of Fermi acceleration on a dissipative bouncer model. Livorati AL; Ladeira DG; Leonel ED Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056205. PubMed ID: 19113198 [TBL] [Abstract][Full Text] [Related]
13. Dynamical properties of a dissipative hybrid Fermi-Ulam-bouncer model. Ladeira DG; Leonel ED Chaos; 2007 Mar; 17(1):013119. PubMed ID: 17411255 [TBL] [Abstract][Full Text] [Related]
14. Fermi-Pasta-Ulam beta lattice: Peierls equation and anomalous heat conductivity. Pereverzev A Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056124. PubMed ID: 14682863 [TBL] [Abstract][Full Text] [Related]
15. Leaking billiards. Nagler J; Krieger M; Linke M; Schönke J; Wiersig J Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046204. PubMed ID: 17500975 [TBL] [Abstract][Full Text] [Related]
16. Fermi acceleration in the randomized driven Lorentz gas and the Fermi-Ulam model. Karlis AK; Papachristou PK; Diakonos FK; Constantoudis V; Schmelcher P Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016214. PubMed ID: 17677550 [TBL] [Abstract][Full Text] [Related]
17. Fermi acceleration and scaling properties of a time dependent oval billiard. Leonel ED; Oliveira DF; Loskutov A Chaos; 2009 Sep; 19(3):033142. PubMed ID: 19792022 [TBL] [Abstract][Full Text] [Related]
18. Dynamical thermalization in time-dependent billiards. Hansen M; Ciro D; Caldas IL; Leonel ED Chaos; 2019 Oct; 29(10):103122. PubMed ID: 31675813 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of classical particles in oval or elliptic billiards with a dispersing mechanism. da Costa DR; Dettmann CP; de Oliveira JA; Leonel ED Chaos; 2015 Mar; 25(3):033109. PubMed ID: 25833431 [TBL] [Abstract][Full Text] [Related]
20. Effect of boundary conditions on diffusion in two-dimensional granular gases. Henrique C; Batrouni G; Bideau D Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 1):011301. PubMed ID: 11304250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]