These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 26520076)
1. Computation of entropy and Lyapunov exponent by a shift transform. Matsuoka C; Hiraide K Chaos; 2015 Oct; 25(10):103110. PubMed ID: 26520076 [TBL] [Abstract][Full Text] [Related]
2. Globally enumerating unstable periodic orbits for observed data using symbolic dynamics. Buhl M; Kennel MB Chaos; 2007 Sep; 17(3):033102. PubMed ID: 17902984 [TBL] [Abstract][Full Text] [Related]
3. Symbolic diffusion entropy rate of chaotic time series as a surrogate measure for the largest Lyapunov exponent. Shiozawa K; Miyano T Phys Rev E; 2019 Sep; 100(3-1):032221. PubMed ID: 31639895 [TBL] [Abstract][Full Text] [Related]
4. Scaling and interleaving of subsystem Lyapunov exponents for spatio-temporal systems. Carretero-Gonzalez R; Orstavik S; Huke J; Broomhead DS; Stark J Chaos; 1999 Jun; 9(2):466-482. PubMed ID: 12779843 [TBL] [Abstract][Full Text] [Related]
5. Chaotic properties of systems with Markov dynamics. Lecomte V; Appert-Rolland C; van Wijland F Phys Rev Lett; 2005 Jul; 95(1):010601. PubMed ID: 16090599 [TBL] [Abstract][Full Text] [Related]
6. Kolmogorov-Sinai entropy for dilute systems of hard particles in equilibrium. de Wijn AS Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046211. PubMed ID: 15903774 [TBL] [Abstract][Full Text] [Related]
7. Using heteroclinic orbits to quantify topological entropy in fluid flows. Sattari S; Chen Q; Mitchell KA Chaos; 2016 Mar; 26(3):033112. PubMed ID: 27036190 [TBL] [Abstract][Full Text] [Related]
8. Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. Lai YC; Liu Z; Billings L; Schwartz IB Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026210. PubMed ID: 12636779 [TBL] [Abstract][Full Text] [Related]
9. Chaotic properties of dilute two- and three-dimensional random Lorentz gases. II. Open systems. van Beijeren H; Latz A; Dorfman JR Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016312. PubMed ID: 11304358 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic formalism for field-driven Lorentz gases. Mülken O; van Beijeren H Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046203. PubMed ID: 15169086 [TBL] [Abstract][Full Text] [Related]
11. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application. Liu HF; Yang YZ; Dai ZH; Yu ZH Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175 [TBL] [Abstract][Full Text] [Related]
12. Numerical and experimental investigation of the effect of filtering on chaotic symbolic dynamics. Zhu L; Lai YC; Hoppensteadt FC; Bollt EM Chaos; 2003 Mar; 13(1):410-9. PubMed ID: 12675447 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Chaotic Dynamics by the Extended Entropic Chaos Degree. Inoue K Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741547 [TBL] [Abstract][Full Text] [Related]
14. Modified correlation entropy estimation for a noisy chaotic time series. Jayawardena AW; Xu P; Li WK Chaos; 2010 Jun; 20(2):023104. PubMed ID: 20590300 [TBL] [Abstract][Full Text] [Related]
15. Periodic orbits and topological entropy of delayed maps. Ferretti Manffra E; Kantz H; Just W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046203. PubMed ID: 11308926 [TBL] [Abstract][Full Text] [Related]
16. Estimation of the degree of dynamical instability from the information entropy of symbolic dynamics. Miyano T; Gotoda H Phys Rev E; 2017 Oct; 96(4-1):042203. PubMed ID: 29347582 [TBL] [Abstract][Full Text] [Related]
17. Statistical characteristics, circulation regimes and unstable periodic orbits of a barotropic atmospheric model. Gritsun A Philos Trans A Math Phys Eng Sci; 2013 May; 371(1991):20120336. PubMed ID: 23588051 [TBL] [Abstract][Full Text] [Related]
18. A Novel Measure Inspired by Lyapunov Exponents for the Characterization of Dynamics in State-Transition Networks. Sándor B; Schneider B; Lázár ZI; Ercsey-Ravasz M Entropy (Basel); 2021 Jan; 23(1):. PubMed ID: 33445685 [TBL] [Abstract][Full Text] [Related]
19. Unstable periodic orbits and noise in chaos computing. Kia B; Dari A; Ditto WL; Spano ML Chaos; 2011 Dec; 21(4):047520. PubMed ID: 22225394 [TBL] [Abstract][Full Text] [Related]
20. Extensivity and additivity of the Kolmogorov-Sinai entropy for simple fluids. Das M; Costa AB; Green JR Phys Rev E; 2017 Feb; 95(2-1):022102. PubMed ID: 28297958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]