These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 26520097)
1. Impact of temperature on the aging mechanisms of arsenic in soils: fractionation and bioaccessibility. Huang G; Chen Z; Wang J; Hou Q; Zhang Y Environ Sci Pollut Res Int; 2016 Mar; 23(5):4594-601. PubMed ID: 26520097 [TBL] [Abstract][Full Text] [Related]
2. The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils. Smith E; Naidu R; Weber J; Juhasz AL Chemosphere; 2008 Mar; 71(4):773-80. PubMed ID: 18023842 [TBL] [Abstract][Full Text] [Related]
3. Effect of aging on bioaccessibility of arsenic and lead in soils. Liang S; Guan DX; Li J; Zhou CY; Luo J; Ma LQ Chemosphere; 2016 May; 151():94-100. PubMed ID: 26930247 [TBL] [Abstract][Full Text] [Related]
4. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction. Girouard E; Zagury GJ Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134 [TBL] [Abstract][Full Text] [Related]
5. Effect of aging on arsenic and lead fractionation and availability in soils: coupling sequential extractions with diffusive gradients in thin-films technique. Liang S; Guan DX; Ren JH; Zhang M; Luo J; Ma LQ J Hazard Mater; 2014 May; 273():272-9. PubMed ID: 24751493 [TBL] [Abstract][Full Text] [Related]
6. The bioaccessibility and fractionation of arsenic in anoxic soils as a function of stabilization using low-cost Fe/Al-based materials: A long-term experiment. Hou Q; Han D; Zhang Y; Han M; Huang G; Xiao L Ecotoxicol Environ Saf; 2020 Mar; 191():110210. PubMed ID: 31958624 [TBL] [Abstract][Full Text] [Related]
7. Arsenic fractionation and bioaccessibility in two alkaline Texas soils incubated with sodium arsenate. Datta R; Makris KC; Sarkar D Arch Environ Contam Toxicol; 2007 May; 52(4):475-82. PubMed ID: 17387422 [TBL] [Abstract][Full Text] [Related]
8. Effect of aging on the bioavailability and fractionation of arsenic in soils derived from five parent materials in a red soil region of Southern China. Wang Y; Zeng X; Lu Y; Su S; Bai L; Li L; Wu C Environ Pollut; 2015 Dec; 207():79-87. PubMed ID: 26349069 [TBL] [Abstract][Full Text] [Related]
9. Effects of organic matter and ageing on the bioaccessibility of arsenic. Meunier L; Koch I; Reimer KJ Environ Pollut; 2011 Oct; 159(10):2530-6. PubMed ID: 21782300 [TBL] [Abstract][Full Text] [Related]
10. Linking selective chemical extraction of iron oxyhydroxides to arsenic bioaccessibility in soil. Palumbo-Roe B; Wragg J; Cave M Environ Pollut; 2015 Dec; 207():256-65. PubMed ID: 26412265 [TBL] [Abstract][Full Text] [Related]
11. Dynamic arsenic aging processes and their mechanisms in nine types of Chinese soils. Wang Y; Zeng X; Lu Y; Bai L; Su S; Wu C Chemosphere; 2017 Nov; 187():404-412. PubMed ID: 28863293 [TBL] [Abstract][Full Text] [Related]
12. Adsorption, sequestration, and bioaccessibility of As(V) in soils. Yang JK; Barnett MO; Jardine PM; Basta NT; Casteel SW Environ Sci Technol; 2002 Nov; 36(21):4562-9. PubMed ID: 12433165 [TBL] [Abstract][Full Text] [Related]
13. Arsenic distribution and bioaccessibility across particle fractions in historically contaminated soils. Smith E; Weber J; Juhasz AL Environ Geochem Health; 2009 Apr; 31 Suppl 1():85-92. PubMed ID: 19224377 [TBL] [Abstract][Full Text] [Related]
14. Effect of biogeochemical interactions on bioaccessibility of arsenic in soils of a former smelter site in Republic of Korea. Yang K; Jeong S; Jho EH; Nam K Environ Geochem Health; 2016 Dec; 38(6):1347-1354. PubMed ID: 26769492 [TBL] [Abstract][Full Text] [Related]
15. The ageing effect on the bioaccessibility and fractionation of arsenic in soils from China. Tang XY; Zhu YG; Shan XQ; McLaren R; Duan J Chemosphere; 2007 Jan; 66(7):1183-90. PubMed ID: 16963101 [TBL] [Abstract][Full Text] [Related]
16. Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Sarkar D; Makris KC; Parra-Noonan MT; Datta R Environ Int; 2007 Feb; 33(2):164-9. PubMed ID: 17034861 [TBL] [Abstract][Full Text] [Related]
17. Effect of sample pretreatment on the fractionation of arsenic in anoxic soils. Huang G; Chen Z; Sun J; Liu F; Wang J; Zhang Y Environ Sci Pollut Res Int; 2015 Jun; 22(11):8367-74. PubMed ID: 25537285 [TBL] [Abstract][Full Text] [Related]
18. Bioaccessible and non-bioaccessible fractions of soil arsenic. Whitacre SD; Basta NT; Dayton EA J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(6):620-8. PubMed ID: 23442113 [TBL] [Abstract][Full Text] [Related]
19. Effects of arsenic and cadmium on bioaccessibility of lead in spiked soils assessed by Unified BARGE Method. Xia Q; Peng C; Lamb D; Kader M; Mallavarapu M; Naidu R; Ng JC Chemosphere; 2016 Jul; 154():343-349. PubMed ID: 27062001 [TBL] [Abstract][Full Text] [Related]
20. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Kim EJ; Yoo JC; Baek K Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]