These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26520313)

  • 1. Finite element modelling of elastic wave scattering within a polycrystalline material in two and three dimensions.
    Van Pamel A; Brett CR; Huthwaite P; Lowe MJ
    J Acoust Soc Am; 2015 Oct; 138(4):2326-36. PubMed ID: 26520313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wave localized finite-difference-time-domain modelling of scattering of elastic waves within a polycrystalline material.
    Shivaprasad S; Pandala A; Krishnamurthy CV; Balasubramaniam K
    J Acoust Soc Am; 2018 Dec; 144(6):3313. PubMed ID: 30599652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element modeling of grain size effects on the ultrasonic microstructural noise backscattering in polycrystalline materials.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2018 Jul; 87():182-202. PubMed ID: 29547790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of grain morphology on ultrasonic wave attenuation in polycrystalline media with statistically equiaxed grains.
    Ryzy M; Grabec T; Sedlák P; Veres IA
    J Acoust Soc Am; 2018 Jan; 143(1):219. PubMed ID: 29390780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the dimensionality of elastic wave scattering within heterogeneous media.
    Van Pamel A; Nagy PB; Lowe MJ
    J Acoust Soc Am; 2016 Dec; 140(6):4360. PubMed ID: 28040036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of ultrasonic attenuation within two- and three-dimensional polycrystalline media.
    Bai X; Tie B; Schmitt JH; Aubry D
    Ultrasonics; 2020 Jan; 100():105980. PubMed ID: 31479969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasonic backscattering model for Rayleigh waves in polycrystals with Born and independent scattering approximations.
    Li S; Huang M; Song Y; Lan B; Li X
    Ultrasonics; 2024 May; 140():107297. PubMed ID: 38520818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-element modelling of elastic wave propagation and scattering within heterogeneous media.
    Van Pamel A; Sha G; Rokhlin SI; Lowe MJ
    Proc Math Phys Eng Sci; 2017 Jan; 473(2197):20160738. PubMed ID: 28265198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical model of longitudinal wave scattering in polycrystals.
    Ghoshal G; Turner JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1419-28. PubMed ID: 19574152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the ultrasonic attenuation in anisotropic weld materials with finite element modeling and grain-scale material description.
    Lhuillier PE; Chassignole B; Oudaa M; Kerhervé SO; Rupin F; Fouquet T
    Ultrasonics; 2017 Jul; 78():40-50. PubMed ID: 28324775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between experimental and 2-D numerical studies of multiple scattering in Inconel600 by means of array probes.
    Shahjahan S; Rupin F; Aubry A; Chassignole B; Fouquet T; Derode A
    Ultrasonics; 2014 Jan; 54(1):358-67. PubMed ID: 23880120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attenuation and velocity of elastic waves in polycrystals with generally anisotropic grains: Analytic and numerical modeling.
    Sha G; Huang M; Lowe MJS; Rokhlin SI
    J Acoust Soc Am; 2020 Apr; 147(4):2442. PubMed ID: 32359302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-element and semi-analytical study of elastic wave propagation in strongly scattering polycrystals.
    Huang M; Huthwaite P; Rokhlin SI; Lowe MJS
    Proc Math Phys Eng Sci; 2022 Feb; 478(2258):20210850. PubMed ID: 35221773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of ultrasonic backscatter using three-dimensional finite element simulations.
    Liu Y; Van Pamel A; Nagy PB; Cawley P
    J Acoust Soc Am; 2019 Mar; 145(3):1584. PubMed ID: 31067955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress-dependent ultrasonic scattering in polycrystalline materials.
    Kube CM; Turner JA
    J Acoust Soc Am; 2016 Feb; 139(2):811-24. PubMed ID: 26936563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three dimensional image-based simulation of ultrasonic wave propagation in polycrystalline metal using phase-field modeling.
    Nakahata K; Sugahara H; Barth M; Köhler B; Schubert F
    Ultrasonics; 2016 Apr; 67():18-29. PubMed ID: 26773789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode-converted ultrasonic scattering in polycrystals with elongated grains.
    Arguelles AP; Kube CM; Hu P; Turner JA
    J Acoust Soc Am; 2016 Sep; 140(3):1570. PubMed ID: 27914376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explicit model for ultrasonic attenuation in equiaxial hexagonal polycrystalline materials.
    Yang L; Lobkis OI; Rokhlin SI
    Ultrasonics; 2011 Apr; 51(3):303-9. PubMed ID: 21035157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling the attenuation in the ATHENA finite elements code for the ultrasonic testing of austenitic stainless steel welds.
    Chassignole B; Duwig V; Ploix MA; Guy P; El Guerjouma R
    Ultrasonics; 2009 Dec; 49(8):653-8. PubMed ID: 19450861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape effect of elongated grains on ultrasonic attenuation in polycrystalline materials.
    Yang L; Lobkis OI; Rokhlin SI
    Ultrasonics; 2011 Aug; 51(6):697-708. PubMed ID: 21396672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.