These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 26520322)

  • 1. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.
    Hasan N; Farouk B
    J Acoust Soc Am; 2015 Oct; 138(4):2414-25. PubMed ID: 26520322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustically driven oscillatory flow fields in a cylindrical resonator at resonance.
    Farouk B; Antao DS; Hasan N
    J Acoust Soc Am; 2019 May; 145(5):2932. PubMed ID: 31153354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.
    Reyt I; Daru V; Bailliet H; Moreau S; Valière JC; Baltean-Carlès D; Weisman C
    J Acoust Soc Am; 2013 Sep; 134(3):1791-801. PubMed ID: 23967913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment.
    Sankaranarayanan SK; Cular S; Bhethanabotla VR; Joseph B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066308. PubMed ID: 18643372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel.
    Doinikov AA; Combriat T; Thibault P; Marmottant P
    Phys Rev E; 2016 Sep; 94(3-1):033109. PubMed ID: 27739843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.
    Antao DS; Farouk B
    J Acoust Soc Am; 2013 Aug; 134(2):917-32. PubMed ID: 23927091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid.
    Mitri FG; Fellah ZE
    Ultrasonics; 2011 Jul; 51(5):523-6. PubMed ID: 21339000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-field acoustic streaming jet.
    Moudjed B; Botton V; Henry D; Millet S; Garandet JP; Ben Hadid H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033011. PubMed ID: 25871206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical investigation of natural convection heat transfer in a cylindrical enclosure due to ultrasonic vibrations.
    Talebi M; Setareh M; Saffar-Avval M; Hosseini Abardeh R
    Ultrasonics; 2017 Apr; 76():52-62. PubMed ID: 28061373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical study of the coupling between Rayleigh streaming and heat transfer at high acoustic level.
    Daru V; Weisman C; Baltean-Carlès D; Bailliet H
    J Acoust Soc Am; 2021 Dec; 150(6):4501. PubMed ID: 34972296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic streaming of a sharp edge.
    Ovchinnikov M; Zhou J; Yalamanchili S
    J Acoust Soc Am; 2014 Jul; 136(1):22-9. PubMed ID: 24993192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic streaming in an ultrasonic air pump with three-dimensional finite-difference time-domain analysis and comparison to the measurement.
    Wada Y; Koyama D; Nakamura K
    Ultrasonics; 2014 Dec; 54(8):2119-25. PubMed ID: 25001051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.
    Reyt I; Bailliet H; Valière JC
    J Acoust Soc Am; 2014 Jan; 135(1):27-37. PubMed ID: 24437742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can the speed of sound be used for detecting critical states of fluid mixtures?
    Reis JC; Ribeiro N; Aguiar-Ricardo A
    J Phys Chem B; 2006 Jan; 110(1):478-84. PubMed ID: 16471558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison.
    Kiebert F; Wege S; Massing J; König J; Cierpka C; Weser R; Schmidt H
    Lab Chip; 2017 Jun; 17(12):2104-2114. PubMed ID: 28540945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.
    Doinikov AA; Thibault P; Marmottant P
    Ultrasonics; 2018 Jul; 87():7-19. PubMed ID: 29428563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of acoustic streaming in a closed-loop traveling wave resonator using laser Doppler velocimetry.
    Desjouy C; Penelet G; Lotton P; Blondeau J
    J Acoust Soc Am; 2009 Nov; 126(5):2176-83. PubMed ID: 19894797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of microchannel protrusion on the bulk acoustic wave-induced acoustofluidics: numerical investigation.
    Zhou Y
    Biomed Microdevices; 2021 Dec; 24(1):7. PubMed ID: 34964071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I.
    Sachs S; Baloochi M; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of inhomogeneous temperature fields on acoustic streaming structures in resonators.
    Červenka M; Bednařík M
    J Acoust Soc Am; 2017 Jun; 141(6):4418. PubMed ID: 28618831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.