These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 26520351)

  • 1. Reciprocal measurement of acoustic feedback paths in hearing aids.
    Sankowsky-Rothe T; Blau M; Schepker H; Doclo S
    J Acoust Soc Am; 2015 Oct; 138(4):EL399-404. PubMed ID: 26520351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of venting on wind noise levels measured at the eardrum.
    Chung K
    Ear Hear; 2013; 34(4):470-81. PubMed ID: 23403807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-ear output measures of ear level fluency devices.
    Stuart A; Butler AK; Jones SM; Jones TA
    Int J Audiol; 2013 Jun; 52(6):413-8. PubMed ID: 23458475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field.
    Rader T; Fastl H; Baumann U
    Ear Hear; 2013; 34(3):324-32. PubMed ID: 23263408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transverse pressure distributions in a simple model ear canal occluded by a hearing aid test fixture.
    Stinson MR; Daigle GA
    J Acoust Soc Am; 2007 Jun; 121(6):3689-702. PubMed ID: 17552720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the applicability of instrumental measures for black-box evaluation of static feedback control in hearing aids.
    Madhu N; Wouters J; Spriet A; Bisitz T; Hohmann V; Moonen M
    J Acoust Soc Am; 2011 Aug; 130(2):933-47. PubMed ID: 21877807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using a reflection model for modeling the dynamic feedback path of digital hearing aids.
    Ma G; Gran F; Jacobsen F; Agerkvist F
    J Acoust Soc Am; 2010 Mar; 127(3):1458-68. PubMed ID: 20329846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and estimating acoustic transfer functions of external ears with or without headphones.
    Deng H; Yang J
    J Acoust Soc Am; 2015 Aug; 138(2):694-707. PubMed ID: 26328687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attenuating the ear canal feedback pressure of a laser-driven hearing aid.
    Khaleghi M; Puria S
    J Acoust Soc Am; 2017 Mar; 141(3):1683. PubMed ID: 28372092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic effects in in-the-ear hearing aid response: results from a computer simulation.
    Kates JM
    Ear Hear; 1988 Jun; 9(3):119-32. PubMed ID: 3410175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of High-Resolution Computed Tomography Imaging for Obtaining Ear Impressions for Hearing Aid Fitting.
    Chen CK; Hsieh LC; Chiang YC; Cheng WD
    Otolaryngol Head Neck Surg; 2019 Oct; 161(4):666-671. PubMed ID: 31060451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound source localization using hearing aids with microphones placed behind-the-ear, in-the-canal, and in-the-pinna.
    Van den Bogaert T; Carette E; Wouters J
    Int J Audiol; 2011 Mar; 50(3):164-76. PubMed ID: 21208034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic feedback path modeling for hearing aids: Comparison of physical position based and position independent models.
    Sankowsky-Rothe T; Schepker H; Doclo S; Blau M
    J Acoust Soc Am; 2020 Jan; 147(1):85. PubMed ID: 32006989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of bone conduction skull transmission by hearing thresholds and ear-canal sound pressure.
    Reinfeldt S; Stenfelt S; HÃ¥kansson B
    Hear Res; 2013 May; 299():19-28. PubMed ID: 23422311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basic acoustic considerations of ear canal probe measurements.
    Dirks DD; Kincaid GE
    Ear Hear; 1987 Oct; 8(5 Suppl):60S-67S. PubMed ID: 3678652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computer simulation of hearing aid response and the effects of ear canal size.
    Kates JM
    J Acoust Soc Am; 1988 May; 83(5):1952-63. PubMed ID: 3403807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedback path variability modeling for robust hearing aids.
    Rafaely B; Roccasalva-Firenze M; Payne E
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2665-73. PubMed ID: 10830388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of the evanescent wave upon acoustic measurements in the human ear canal.
    Brass D; Locke A
    J Acoust Soc Am; 1997 Apr; 101(4):2164-75. PubMed ID: 9104019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speech recognition in noise using bilateral open-fit hearing aids: the limited benefit of directional microphones and noise reduction.
    Magnusson L; Claesson A; Persson M; Tengstrand T
    Int J Audiol; 2013 Jan; 52(1):29-36. PubMed ID: 22928919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unexpected intensity changes in the ear canal during a F(0)-shifted feedback experiment.
    Tlumak AI; Szuminsky NJ; Shaiman S; Pratt SR
    J Acoust Soc Am; 2013 Nov; 134(5):EL413-9. PubMed ID: 24181984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.