These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26520499)

  • 21. Numerical stabilization of entanglement computation in auxiliary-field quantum Monte Carlo simulations of interacting many-fermion systems.
    Broecker P; Trebst S
    Phys Rev E; 2016 Dec; 94(6-1):063306. PubMed ID: 28085385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imaginary polarization as a way to surmount the sign problem in ab initio calculations of spin-imbalanced Fermi gases.
    Braun J; Chen JW; Deng J; Drut JE; Friman B; Ma CT; Tsai YD
    Phys Rev Lett; 2013 Mar; 110(13):130404. PubMed ID: 23581300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Worm algorithm and diagrammatic Monte Carlo: a new approach to continuous-space path integral Monte Carlo simulations.
    Boninsegni M; Prokof'ev NV; Svistunov BV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036701. PubMed ID: 17025780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral Functions from Auxiliary-Field Quantum Monte Carlo without Analytic Continuation: The Extended Koopmans' Theorem Approach.
    Lee J; Malone FD; Morales MA; Reichman DR
    J Chem Theory Comput; 2021 Jun; 17(6):3372-3387. PubMed ID: 33983735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical Transformations Approaching Chemical Accuracy via Correlated Sampling in Auxiliary-Field Quantum Monte Carlo.
    Shee J; Zhang S; Reichman DR; Friesner RA
    J Chem Theory Comput; 2017 Jun; 13(6):2667-2680. PubMed ID: 28481546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum Monte Carlo method for the ground state of many-boson systems.
    Purwanto W; Zhang S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056702. PubMed ID: 15600791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An explicitly correlated approach to basis set incompleteness in full configuration interaction quantum Monte Carlo.
    Booth GH; Cleland D; Alavi A; Tew DP
    J Chem Phys; 2012 Oct; 137(16):164112. PubMed ID: 23126700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.
    Eshuis H; Yarkony J; Furche F
    J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of the full configuration interaction quantum Monte Carlo method using homogeneous electron gas models.
    Shepherd JJ; Booth GH; Alavi A
    J Chem Phys; 2012 Jun; 136(24):244101. PubMed ID: 22755559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational methods in coupled electron-ion Monte Carlo simulations.
    Pierleoni C; Ceperley DM
    Chemphyschem; 2005 Sep; 6(9):1872-8. PubMed ID: 16088971
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous-time quantum Monte Carlo and maximum entropy approach to an imaginary-time formulation of strongly correlated steady-state transport.
    Dirks A; Werner P; Jarrell M; Pruschke T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026701. PubMed ID: 20866934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear density response from imaginary-time correlation functions: Ab initio path integral Monte Carlo simulations of the warm dense electron gas.
    Dornheim T; Moldabekov ZA; Vorberger J
    J Chem Phys; 2021 Aug; 155(5):054110. PubMed ID: 34364322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of the imaginary time hierarchical equations of motion method to calculate real time correlation functions.
    Xing T; Li T; Yan Y; Bai S; Shi Q
    J Chem Phys; 2022 Jun; 156(24):244102. PubMed ID: 35778091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flat histogram diagrammatic Monte Carlo method: calculation of the Green's function in imaginary time.
    Diamantis NG; Manousakis E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043302. PubMed ID: 24229299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accessing the dynamics of large many-particle systems using the stochastic series expansion.
    Dorneich A; Troyer M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066701. PubMed ID: 11736307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Variational quantum Monte Carlo simulations with tensor-network states.
    Sandvik AW; Vidal G
    Phys Rev Lett; 2007 Nov; 99(22):220602. PubMed ID: 18233275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent developments in quantum Monte Carlo simulations with applications for cold gases.
    Pollet L
    Rep Prog Phys; 2012 Sep; 75(9):094501. PubMed ID: 22885729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polynomial-time-scaling quantum dynamics with time-dependent quantum Monte Carlo.
    Christov IP
    J Phys Chem A; 2009 May; 113(20):6016-21. PubMed ID: 19391581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reconstruction of thermally symmetrized quantum autocorrelation functions from imaginary-time data.
    Predescu C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066705. PubMed ID: 15697551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A phaseless auxiliary-field quantum Monte Carlo perspective on the uniform electron gas at finite temperatures: Issues, observations, and benchmark study.
    Lee J; Morales MA; Malone FD
    J Chem Phys; 2021 Feb; 154(6):064109. PubMed ID: 33588535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.