These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26520502)

  • 1. Vibrational solvatochromism. III. Rigorous treatment of the dispersion interaction contribution.
    Błasiak B; Cho M
    J Chem Phys; 2015 Oct; 143(16):164111. PubMed ID: 26520502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational Probes: From Small Molecule Solvatochromism Theory and Experiments to Applications in Complex Systems.
    Błasiak B; Londergan CH; Webb LJ; Cho M
    Acc Chem Res; 2017 Apr; 50(4):968-976. PubMed ID: 28345879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational solvatochromism. II. A first-principle theory of solvation-induced vibrational frequency shift based on effective fragment potential method.
    Błasiak B; Cho M
    J Chem Phys; 2014 Apr; 140(16):164107. PubMed ID: 24784253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational spectroscopic determination of local solvent electric field, solute-solvent electrostatic interaction energy, and their fluctuation amplitudes.
    Lee H; Lee G; Jeon J; Cho M
    J Phys Chem A; 2012 Jan; 116(1):347-57. PubMed ID: 22087732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational solvatochromism of nitrile infrared probes: beyond the vibrational Stark dipole approach.
    Błasiak B; Ritchie AW; Webb LJ; Cho M
    Phys Chem Chem Phys; 2016 Jul; 18(27):18094-111. PubMed ID: 27326899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amide I vibrational dynamics of N-methylacetamide in polar solvents: the role of electrostatic interactions.
    DeCamp MF; DeFlores L; McCracken JM; Tokmakoff A; Kwac K; Cho M
    J Phys Chem B; 2005 Jun; 109(21):11016-26. PubMed ID: 16852342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational solvatochromism and electrochromism. II. Multipole analysis.
    Lee H; Choi JH; Cho M
    J Chem Phys; 2012 Sep; 137(11):114307. PubMed ID: 22998262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational solvatochromism: towards systematic approach to modeling solvation phenomena.
    Błasiak B; Lee H; Cho M
    J Chem Phys; 2013 Jul; 139(4):044111. PubMed ID: 23901964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational solvatochromism and electrochromism of cyanide, thiocyanate, and azide anions in water.
    Lee H; Choi JH; Cho M
    Phys Chem Chem Phys; 2010 Oct; 12(39):12658-69. PubMed ID: 20830379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanics force field-based general map for the solvation effect on amide I probe of peptide in different micro-environments.
    Cai K; Su T; Lin S; Zheng R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():548-56. PubMed ID: 24036186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrational solvatochromism and electrochromism: coarse-grained models and their relationships.
    Cho M
    J Chem Phys; 2009 Mar; 130(9):094505. PubMed ID: 19275407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-Principles Simulation Study of Vibrational Spectral Diffusion and Hydrogen Bond Fluctuations in Aqueous Solution of N-Methylacetamide.
    Yadav VK; Chandra A
    J Phys Chem B; 2015 Jul; 119(30):9858-67. PubMed ID: 26191969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent-Independent Anharmonicity for Carbonyl Oscillators.
    Schneider SH; Kratochvil HT; Zanni MT; Boxer SG
    J Phys Chem B; 2017 Mar; 121(10):2331-2338. PubMed ID: 28225620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational energy relaxation of the amide I mode of N-methylacetamide in D₂O studied through Born-Oppenheimer molecular dynamics.
    Farag MH; Bastida A; Ruiz-López MF; Monard G; Ingrosso F
    J Phys Chem B; 2014 Jun; 118(23):6186-97. PubMed ID: 24836589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent-induced infrared frequency shifts in aromatic nitriles are quantitatively described by the vibrational Stark effect.
    Levinson NM; Fried SD; Boxer SG
    J Phys Chem B; 2012 Sep; 116(35):10470-6. PubMed ID: 22448878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydration Effect on Amide I Infrared Bands in Water: An Interpretation Based on an Interaction Energy Decomposition Scheme.
    Farag MH; Ruiz-López MF; Bastida A; Monard G; Ingrosso F
    J Phys Chem B; 2015 Jul; 119(29):9056-67. PubMed ID: 25233436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of N-methylacetamide in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics.
    Yang ZZ; Qian P
    J Chem Phys; 2006 Aug; 125(6):64311. PubMed ID: 16942290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between Hydrogen Bonding and Vibrational Coupling in Liquid N-Methylacetamide.
    Cunha AV; Salamatova E; Bloem E; Roeters SJ; Woutersen S; Pshenichnikov MS; Jansen TLC
    J Phys Chem Lett; 2017 Jun; 8(11):2438-2444. PubMed ID: 28510458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular quantum mechanical gradients within the polarizable embedding approach--application to the internal vibrational Stark shift of acetophenone.
    List NH; Beerepoot MT; Olsen JM; Gao B; Ruud K; Jensen HJ; Kongsted J
    J Chem Phys; 2015 Jan; 142(3):034119. PubMed ID: 25612701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic Collapse in N-Methylacetamide-Water Mixtures.
    Salamatova E; Cunha AV; Bloem E; Roeters SJ; Woutersen S; Jansen TLC; Pshenichnikov MS
    J Phys Chem A; 2018 Mar; 122(9):2468-2478. PubMed ID: 29425450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.