These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26520539)

  • 1. A three dimensional integral equation approach for fluids under confinement: Argon in zeolites.
    Lomba E; Bores C; Sánchez-Gil V; Noya EG
    J Chem Phys; 2015 Oct; 143(16):164703. PubMed ID: 26520539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explicit spatial description of fluid inclusions in porous matrices in terms of an inhomogeneous integral equation.
    Lomba E; Bores C; Kahl G
    J Chem Phys; 2014 Oct; 141(16):164704. PubMed ID: 25362329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integral equation and simulation study of hydrogen inclusions in a molecular crystal of short-capped nanotubes.
    Lomba E; Bores C; Notario R; Sánchez-Gil V
    J Phys Condens Matter; 2016 Sep; 28(34):344006. PubMed ID: 27367179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscopic structure and thermodynamics of a core-softened model fluid: insights from grand canonical Monte Carlo simulations and integral equations theory.
    Pizio O; Dominguez H; Duda Y; Sokołowski S
    J Chem Phys; 2009 May; 130(17):174504. PubMed ID: 19425787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of a diatomic molecular fluid into random porous media.
    Fernaud MJ; Lomba E; Weis JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051501. PubMed ID: 11735923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse Monte Carlo modeling in confined systems.
    Sánchez-Gil V; Noya EG; Lomba E
    J Chem Phys; 2014 Jan; 140(2):024504. PubMed ID: 24437893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational study of electrolyte adsorption in a simple model for intercalated clays.
    Lomba E; Weis JJ
    J Chem Phys; 2010 Mar; 132(10):104705. PubMed ID: 20232982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constructing a new closure theory based on the third-order Ornstein-Zernike equation and a study of the adsorption of simple fluids.
    Lee LL
    J Chem Phys; 2011 Nov; 135(20):204706. PubMed ID: 22128951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the Replica Ornstein-Zernike Equations to Study Submonolayer Adsorption on Energetically Heterogeneous Surfaces.
    Rzysko W; Pizio O; Sokolowski S; Sokolowska Z
    J Colloid Interface Sci; 1999 Nov; 219(1):184-189. PubMed ID: 10527586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of a Hard Sphere Fluid in Disordered Microporous Quenched Matrix of Short Chain Molecules: Integral Equations and Grand Canonical Monte Carlo Simulations.
    Malo BM; Pizio O; Trokhymchuk A; Duda Y
    J Colloid Interface Sci; 1999 Mar; 211(2):387-394. PubMed ID: 10049555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local structure and thermodynamics of a core-softened potential fluid: theory and simulation.
    Zhou S; Jamnik A; Wolfe E; Buldyrev SV
    Chemphyschem; 2007 Jan; 8(1):138-47. PubMed ID: 17121412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Closure for the Ornstein-Zernike equation with pressure and free energy consistency.
    Tsednee T; Luchko T
    Phys Rev E; 2019 Mar; 99(3-1):032130. PubMed ID: 30999429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replica Ornstein-Zernike self-consistent theory for mixtures in random pores.
    Pellicane G; Caccamo C; Wilson DS; Lee LL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061202. PubMed ID: 15244549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural properties of a model system with effective interparticle interaction potential applicable in modeling of complex fluids.
    Zhou S; Jamnik A
    J Phys Chem B; 2008 Nov; 112(44):13862-72. PubMed ID: 18842024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local structures of fluid with discrete spherical potential: Theory and grand canonical ensemble Monte Carlo simulation.
    Zhou S; Lajovic A; Jamnik A
    J Chem Phys; 2008 Sep; 129(12):124503. PubMed ID: 19045032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integral equation theory for fluids ordered by an external field: separable interactions.
    Perera A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2912-29. PubMed ID: 11970096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replica Ornstein-Zernike theory of adsorption in a templated porous material: interaction site systems.
    Sarkisov L; Van Tassel PR
    J Chem Phys; 2005 Oct; 123(16):164706. PubMed ID: 16268721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A practical integral equation for the structure and thermodynamics of hard sphere Coulomb fluids.
    Zwanikken JW; Jha PK; Olvera de la Cruz M
    J Chem Phys; 2011 Aug; 135(6):064106. PubMed ID: 21842925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-vapor interfaces in XY -spin fluids: an inhomogeneous anisotropic integral-equation approach.
    Omelyan IP; Folk R; Kovalenko A; Fenz W; Mryglod IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011123. PubMed ID: 19257017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and phase behavior of Widom-Rowlinson model calculated from a nonuniform Ornstein-Zernike equation.
    Malijevský A; Sokołowski S; Zientarski T
    J Chem Phys; 2006 Sep; 125(11):114505. PubMed ID: 16999488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.