These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 26520546)

  • 1. Many-body ab initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO.
    Mitra C; Krogel JT; Santana JA; Reboredo FA
    J Chem Phys; 2015 Oct; 143(16):164710. PubMed ID: 26520546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural stability and defect energetics of ZnO from diffusion quantum Monte Carlo.
    Santana JA; Krogel JT; Kim J; Kent PR; Reboredo FA
    J Chem Phys; 2015 Apr; 142(16):164705. PubMed ID: 25933782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Monte Carlo study of the optical and diffusive properties of the vacancy defect in diamond.
    Hood RQ; Kent PR; Needs RJ; Briddon PR
    Phys Rev Lett; 2003 Aug; 91(7):076403. PubMed ID: 12935038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion quantum Monte Carlo calculations of SrFeO
    Santana JA; Krogel JT; Kent PRC; Reboredo FA
    J Chem Phys; 2017 Jul; 147(3):034701. PubMed ID: 28734312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NiO: correlated band structure of a charge-transfer insulator.
    Kunes J; Anisimov VI; Skornyakov SL; Lukoyanov AV; Vollhardt D
    Phys Rev Lett; 2007 Oct; 99(15):156404. PubMed ID: 17995195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cationic and anionic vacancies on the NiO(100) surface: DFT+U and hybrid functional density functional theory calculations.
    Ferrari AM; Pisani C; Cinquini F; Giordano L; Pacchioni G
    J Chem Phys; 2007 Nov; 127(17):174711. PubMed ID: 17994846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cohesive energy and structural parameters of binary oxides of groups IIA and IIIB from diffusion quantum Monte Carlo.
    Santana JA; Krogel JT; Kent PR; Reboredo FA
    J Chem Phys; 2016 May; 144(17):174707. PubMed ID: 27155647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vacancy diffusion and coalescence in graphene directed by defect strain fields.
    Trevethan T; Latham CD; Heggie MI; Briddon PR; Rayson MJ
    Nanoscale; 2014 Mar; 6(5):2978-86. PubMed ID: 24487384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical properties of oxygen vacancies in germanium oxides: quantum chemical modeling of photoexcitation and photoluminescence.
    Zyubin AS; Mebel AM; Lin SH
    J Phys Chem A; 2007 Sep; 111(38):9479-85. PubMed ID: 17629254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio cluster calculations on the electronic structure of oxygen vacancies at the polar ZnO(0001) surface and on the adsorption of H2, CO, and CO2 at these sites.
    Fink K
    Phys Chem Chem Phys; 2006 Apr; 8(13):1482-9. PubMed ID: 16633631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage.
    Zhou G; Wang DW; Yin LC; Li N; Li F; Cheng HM
    ACS Nano; 2012 Apr; 6(4):3214-23. PubMed ID: 22424545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of nickel carbide (NiC) and its cation (NiC+).
    Lau KC; Chang YC; Shi X; Ng CY
    J Chem Phys; 2010 Sep; 133(11):114304. PubMed ID: 20866136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion quantum Monte Carlo and density functional calculations of the structural stability of bilayer arsenene.
    Kadioglu Y; Santana JA; Özaydin HD; Ersan F; Aktürk OÜ; Aktürk E; Reboredo FA
    J Chem Phys; 2018 Jun; 148(21):214706. PubMed ID: 29884054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion and aggregation of oxygen vacancies in amorphous silica.
    Munde MS; Gao DZ; Shluger AL
    J Phys Condens Matter; 2017 Jun; 29(24):245701. PubMed ID: 28504974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting photoemission and inverse photoemission spectra of nickel oxide from first principles: implications for solar energy conversion.
    Alidoust N; Toroker MC; Carter EA
    J Phys Chem B; 2014 Jul; 118(28):7963-71. PubMed ID: 24689856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MnNiO
    Dzubak AL; Mitra C; Chance M; Kuhn S; Jellison GE; Sefat AS; Krogel JT; Reboredo FA
    J Chem Phys; 2017 Nov; 147(17):174703. PubMed ID: 29117688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic Material Properties Dictating Oxygen Vacancy Formation Energetics in Metal Oxides.
    Deml AM; Holder AM; O'Hayre RP; Musgrave CB; Stevanović V
    J Phys Chem Lett; 2015 May; 6(10):1948-53. PubMed ID: 26263275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical studies of defect states in GaTe.
    Rak Z; Mahanti SD; Mandal KC; Fernelius NC
    J Phys Condens Matter; 2009 Jan; 21(1):015504. PubMed ID: 21817225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of native point defects in α-Fe2O3: an ab initio study.
    Lee J; Han S
    Phys Chem Chem Phys; 2013 Nov; 15(43):18906-14. PubMed ID: 24092391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum chemical modeling of photoadsorption properties of the nitrogen-vacancy point defect in diamond.
    Zyubin AS; Mebel AM; Hayashi M; Chang HC; Lin SH
    J Comput Chem; 2009 Jan; 30(1):119-31. PubMed ID: 18548526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.