These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

552 related articles for article (PubMed ID: 26520762)

  • 1. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma.
    Yang D; Rao G; Martinez J; Veeraraghavan A; Rao A
    Med Phys; 2015 Nov; 42(11):6725-35. PubMed ID: 26520762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: a preliminary investigation in terms of identification and segmentation.
    Assefa D; Keller H; Ménard C; Laperriere N; Ferrari RJ; Yeung I
    Med Phys; 2010 Apr; 37(4):1722-36. PubMed ID: 20443493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of survival with multi-scale radiomic analysis in glioblastoma patients.
    Chaddad A; Sabri S; Niazi T; Abdulkarim B
    Med Biol Eng Comput; 2018 Dec; 56(12):2287-2300. PubMed ID: 29915951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme.
    Chen X; Fang M; Dong D; Liu L; Xu X; Wei X; Jiang X; Qin L; Liu Z
    Acad Radiol; 2019 Oct; 26(10):1292-1300. PubMed ID: 30660472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Habitat Features Derived from Multiparametric Magnetic Resonance Imaging Data Are Associated with Molecular Subtype and 12-Month Survival Status in Glioblastoma Multiforme.
    Lee J; Narang S; Martinez J; Rao G; Rao A
    PLoS One; 2015; 10(9):e0136557. PubMed ID: 26368923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative study of shape descriptors from glioblastoma multiforme phenotypes for predicting survival outcome.
    Chaddad A; Desrosiers C; Hassan L; Tanougast C
    Br J Radiol; 2016 Dec; 89(1068):20160575. PubMed ID: 27781499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracted magnetic resonance texture features discriminate between phenotypes and are associated with overall survival in glioblastoma multiforme patients.
    Chaddad A; Tanougast C
    Med Biol Eng Comput; 2016 Nov; 54(11):1707-1718. PubMed ID: 26960324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of glioblastoma heterogeneity on survival stratification: a multimodal MR imaging texture analysis.
    Liu Y; Zhang X; Feng N; Yin L; He Y; Xu X; Lu H
    Acta Radiol; 2018 Oct; 59(10):1239-1246. PubMed ID: 29430935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Radiomic Features Based on Joint Intensity Matrices for Predicting Glioblastoma Patient Survival Time.
    Chaddad A; Daniel P; Desrosiers C; Toews M; Abdulkarim B
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):795-804. PubMed ID: 29993848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of tumor shape features for overall survival prognosis in glioblastoma multiforme patients.
    Sanghani P; Ti AB; Kam King NK; Ren H
    Surg Oncol; 2019 Jun; 29():178-183. PubMed ID: 31196485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiomic analysis of multi-contrast brain MRI for the prediction of survival in patients with glioblastoma multiforme.
    Chaddad A; Desrosiers C; Toews M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4035-4038. PubMed ID: 28325002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting MGMT methylation status of glioblastomas from MRI texture.
    Levner I; Drabycz S; Roldan G; De Robles P; Cairncross JG; Mitchell R
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):522-30. PubMed ID: 20426152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-extracted MR imaging features are associated with survival in glioblastoma patients.
    Mazurowski MA; Zhang J; Peters KB; Hobbs H
    J Neurooncol; 2014 Dec; 120(3):483-8. PubMed ID: 25151504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiparametric magnetic resonance imaging to differentiate high-grade gliomas and brain metastases.
    Mouthuy N; Cosnard G; Abarca-Quinones J; Michoux N
    J Neuroradiol; 2012 Dec; 39(5):301-7. PubMed ID: 22197404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas.
    Korfiatis P; Kline TL; Coufalova L; Lachance DH; Parney IF; Carter RE; Buckner JC; Erickson BJ
    Med Phys; 2016 Jun; 43(6):2835-2844. PubMed ID: 27277032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation.
    Choi Y; Nam Y; Lee YS; Kim J; Ahn KJ; Jang J; Shin NY; Kim BS; Jeon SS
    Eur J Radiol; 2020 Jul; 128():109031. PubMed ID: 32417712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging.
    Drabycz S; Roldán G; de Robles P; Adler D; McIntyre JB; Magliocco AM; Cairncross JG; Mitchell JR
    Neuroimage; 2010 Jan; 49(2):1398-405. PubMed ID: 19796694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regression based overall survival prediction of glioblastoma multiforme patients using a single discovery cohort of multi-institutional multi-channel MR images.
    Sanghani P; Ang BT; King NKK; Ren H
    Med Biol Eng Comput; 2019 Aug; 57(8):1683-1691. PubMed ID: 31104273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting glioblastoma molecular subtypes and prognosis with a multimodal model integrating convolutional neural network, radiomics, and semantics.
    Zhong S; Ren JX; Yu ZP; Peng YD; Yu CW; Deng D; Xie Y; He ZQ; Duan H; Wu B; Li H; Yang WZ; Bai Y; Sai K; Chen YS; Guo CC; Li DP; Cheng Y; Zhang XH; Mou YG
    J Neurosurg; 2023 Aug; 139(2):305-314. PubMed ID: 36461822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer Imaging Phenomics via CaPTk: Multi-Institutional Prediction of Progression-Free Survival and Pattern of Recurrence in Glioblastoma.
    Fathi Kazerooni A; Akbari H; Shukla G; Badve C; Rudie JD; Sako C; Rathore S; Bakas S; Pati S; Singh A; Bergman M; Ha SM; Kontos D; Nasrallah M; Bagley SJ; Lustig RA; O'Rourke DM; Sloan AE; Barnholtz-Sloan JS; Mohan S; Bilello M; Davatzikos C
    JCO Clin Cancer Inform; 2020 Mar; 4():234-244. PubMed ID: 32191542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.