These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
564 related articles for article (PubMed ID: 26520762)
21. Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time. Liao X; Cai B; Tian B; Luo Y; Song W; Li Y J Cell Mol Med; 2019 Jun; 23(6):4375-4385. PubMed ID: 31001929 [TBL] [Abstract][Full Text] [Related]
22. Texture Feature Ratios from Relative CBV Maps of Perfusion MRI Are Associated with Patient Survival in Glioblastoma. Lee J; Jain R; Khalil K; Griffith B; Bosca R; Rao G; Rao A AJNR Am J Neuroradiol; 2016 Jan; 37(1):37-43. PubMed ID: 26471746 [TBL] [Abstract][Full Text] [Related]
23. Discrimination Between Solitary Brain Metastasis and Glioblastoma Multiforme by Using ADC-Based Texture Analysis: A Comparison of Two Different ROI Placements. Zhang G; Chen X; Zhang S; Ruan X; Gao C; Liu Z; Wei X Acad Radiol; 2019 Nov; 26(11):1466-1472. PubMed ID: 30770161 [TBL] [Abstract][Full Text] [Related]
24. High-order radiomics features based on T2 FLAIR MRI predict multiple glioma immunohistochemical features: A more precise and personalized gliomas management. Li J; Liu S; Qin Y; Zhang Y; Wang N; Liu H PLoS One; 2020; 15(1):e0227703. PubMed ID: 31968004 [TBL] [Abstract][Full Text] [Related]
25. Radiomic Analysis Reveals Prognostic Information in T1-Weighted Baseline Magnetic Resonance Imaging in Patients With Glioblastoma. Ingrisch M; Schneider MJ; Nörenberg D; Negrao de Figueiredo G; Maier-Hein K; Suchorska B; Schüller U; Albert N; Brückmann H; Reiser M; Tonn JC; Ertl-Wagner B Invest Radiol; 2017 Jun; 52(6):360-366. PubMed ID: 28079702 [TBL] [Abstract][Full Text] [Related]
26. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. Artzi M; Bressler I; Ben Bashat D J Magn Reson Imaging; 2019 Aug; 50(2):519-528. PubMed ID: 30635952 [TBL] [Abstract][Full Text] [Related]
27. Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma. Nakagawa M; Nakaura T; Namimoto T; Kitajima M; Uetani H; Tateishi M; Oda S; Utsunomiya D; Makino K; Nakamura H; Mukasa A; Hirai T; Yamashita Y Eur J Radiol; 2018 Nov; 108():147-154. PubMed ID: 30396648 [TBL] [Abstract][Full Text] [Related]
28. Content based image retrieval for MR image studies of brain tumors. Dube S; El-Saden S; Cloughesy TF; Sinha U Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3337-40. PubMed ID: 17946561 [TBL] [Abstract][Full Text] [Related]
29. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach. Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238 [TBL] [Abstract][Full Text] [Related]
30. Texture analysis based on ADC maps and T2-FLAIR images for the assessment of the severity and prognosis of ischaemic stroke. Wang H; Lin J; Zheng L; Zhao J; Song B; Dai Y Clin Imaging; 2020 Nov; 67():152-159. PubMed ID: 32739735 [TBL] [Abstract][Full Text] [Related]
32. Survival prediction in glioblastoma on post-contrast magnetic resonance imaging using filtration based first-order texture analysis: Comparison of multiple machine learning models. Priya S; Agarwal A; Ward C; Locke T; Monga V; Bathla G Neuroradiol J; 2021 Aug; 34(4):355-362. PubMed ID: 33533273 [TBL] [Abstract][Full Text] [Related]
33. Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction. Zhou M; Chaudhury B; Hall LO; Goldgof DB; Gillies RJ; Gatenby RA J Magn Reson Imaging; 2017 Jul; 46(1):115-123. PubMed ID: 27678245 [TBL] [Abstract][Full Text] [Related]
34. Identifying the mesenchymal molecular subtype of glioblastoma using quantitative volumetric analysis of anatomic magnetic resonance images. Naeini KM; Pope WB; Cloughesy TF; Harris RJ; Lai A; Eskin A; Chowdhury R; Phillips HS; Nghiemphu PL; Behbahanian Y; Ellingson BM Neuro Oncol; 2013 May; 15(5):626-34. PubMed ID: 23444259 [TBL] [Abstract][Full Text] [Related]
35. Integrative analysis of diffusion-weighted MRI and genomic data to inform treatment of glioblastoma. Jajamovich GH; Valiathan CR; Cristescu R; Somayajula S J Neurooncol; 2016 Sep; 129(2):289-300. PubMed ID: 27393347 [TBL] [Abstract][Full Text] [Related]
36. Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. Hu X; Wong KK; Young GS; Guo L; Wong ST J Magn Reson Imaging; 2011 Feb; 33(2):296-305. PubMed ID: 21274970 [TBL] [Abstract][Full Text] [Related]
37. An investigation of machine learning methods in delta-radiomics feature analysis. Chang Y; Lafata K; Sun W; Wang C; Chang Z; Kirkpatrick JP; Yin FF PLoS One; 2019; 14(12):e0226348. PubMed ID: 31834910 [TBL] [Abstract][Full Text] [Related]
38. Computer-Extracted Texture Features to Distinguish Cerebral Radionecrosis from Recurrent Brain Tumors on Multiparametric MRI: A Feasibility Study. Tiwari P; Prasanna P; Wolansky L; Pinho M; Cohen M; Nayate AP; Gupta A; Singh G; Hatanpaa KJ; Sloan A; Rogers L; Madabhushi A AJNR Am J Neuroradiol; 2016 Dec; 37(12):2231-2236. PubMed ID: 27633806 [TBL] [Abstract][Full Text] [Related]
39. Multiparametric Magnetic Resonance Imaging in the Assessment of Primary Brain Tumors Through Radiomic Features: A Metric for Guided Radiation Treatment Planning. Florez E; Nichols T; E Parker E; T Lirette S; Howard CM; Fatemi A Cureus; 2018 Oct; 10(10):e3426. PubMed ID: 30542636 [TBL] [Abstract][Full Text] [Related]
40. Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning. Sanghani P; Ang BT; King NKK; Ren H Surg Oncol; 2018 Dec; 27(4):709-714. PubMed ID: 30449497 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]