These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 26520810)

  • 1. Comparison of the characteristics and mechanisms of Hg(II) sorption by biochars and activated carbon.
    Xu X; Schierz A; Xu N; Cao X
    J Colloid Interface Sci; 2016 Feb; 463():55-60. PubMed ID: 26520810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution.
    Tan G; Sun W; Xu Y; Wang H; Xu N
    Bioresour Technol; 2016 Jul; 211():727-35. PubMed ID: 27061260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy.
    Liu P; Ptacek CJ; Blowes DW; Landis RC
    J Hazard Mater; 2016 May; 308():233-42. PubMed ID: 26844404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic investigation of mercury sorption by Brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry.
    Dong X; Ma LQ; Zhu Y; Li Y; Gu B
    Environ Sci Technol; 2013; 47(21):12156-64. PubMed ID: 24040905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars.
    Peng H; Gao P; Chu G; Pan B; Peng J; Xing B
    Environ Pollut; 2017 Oct; 229():846-853. PubMed ID: 28779896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation.
    Srinivasan P; Sarmah AK
    Sci Total Environ; 2015 Jan; 502():471-80. PubMed ID: 25290589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood.
    Wang H; Gao B; Wang S; Fang J; Xue Y; Yang K
    Bioresour Technol; 2015 Dec; 197():356-62. PubMed ID: 26344243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cosorption of phenanthrene and mercury(II) from aqueous solution by soybean stalk-based biochar.
    Kong H; He J; Gao Y; Wu H; Zhu X
    J Agric Food Chem; 2011 Nov; 59(22):12116-23. PubMed ID: 21999804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced mercury ion adsorption by amine-modified activated carbon.
    Zhu J; Yang J; Deng B
    J Hazard Mater; 2009 Jul; 166(2-3):866-72. PubMed ID: 19135298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars.
    Han Z; Sani B; Mrozik W; Obst M; Beckingham B; Karapanagioti HK; Werner D
    Water Res; 2015 Mar; 70():394-403. PubMed ID: 25555224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of heavy metals from aqueous solution by UV-mutant Bacillus subtilis loaded on biochars derived from different stock materials.
    Wang T; Sun H; Ren X; Li B; Mao H
    Ecotoxicol Environ Saf; 2018 Feb; 148():285-292. PubMed ID: 29080526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of mercury stabilization mechanisms by sulfurized biochars determined using X-ray absorption spectroscopy.
    Liu P; Ptacek CJ; Elena KMA; Blowes DW; Gould WD; Finfrock YZ; Wang AO; Landis RC
    J Hazard Mater; 2018 Apr; 347():114-122. PubMed ID: 29304450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar.
    Rajapaksha AU; Vithanage M; Ahmad M; Seo DC; Cho JS; Lee SE; Lee SS; Ok YS
    J Hazard Mater; 2015 Jun; 290():43-50. PubMed ID: 25734533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of various thiol-functionalized carbon-based materials for enhanced removal of mercury from aqueous solution.
    Xia S; Huang Y; Tang J; Wang L
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8709-8720. PubMed ID: 30710328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of oxidation treatment on the adsorption and the stability of mercury on activated carbon.
    Hu CX; Zhou JS; Luo ZY; He S; Wang GK; Cen KF
    J Environ Sci (China); 2006; 18(6):1161-6. PubMed ID: 17294959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An X-ray photoelectron spectroscopy study of surface changes on brominated and sulfur-treated activated carbon sorbents during mercury capture: performance of pellet versus fiber sorbents.
    Saha A; Abram DN; Kuhl KP; Paradis J; Crawford JL; Sasmaz E; Chang R; Jaramillo TF; Wilcox J
    Environ Sci Technol; 2013 Dec; 47(23):13695-701. PubMed ID: 24256554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Inherent Inorganic Constituents in SO
    Xu X; Huang D; Zhao L; Kan Y; Cao X
    Environ Sci Technol; 2016 Dec; 50(23):12957-12965. PubMed ID: 27792316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars.
    Rajapaksha AU; Vithanage M; Zhang M; Ahmad M; Mohan D; Chang SX; Ok YS
    Bioresour Technol; 2014 Aug; 166():303-8. PubMed ID: 24926603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vapor-phase sorption of hexachlorobenzene on typical municipal solid waste (MSW) incineration fly ashes, clay minerals and activated carbon.
    Gao Y; Zhang H; Chen J
    Chemosphere; 2010 Nov; 81(8):1012-7. PubMed ID: 20875668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of hydrogen sulfide by biochars derived from pyrolysis of different agricultural/forestry wastes.
    Shang G; Li Q; Liu L; Chen P; Huang X
    J Air Waste Manag Assoc; 2016 Jan; 66(1):8-16. PubMed ID: 26447857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.