BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 26520912)

  • 21. Patella tendon moment arm function considerations for human vastus lateralis force estimates.
    Bakenecker P; Raiteri B; Hahn D
    J Biomech; 2019 Mar; 86():225-231. PubMed ID: 30736963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of patellar position on the knee extensor mechanism in normal and crouched walking.
    Lenhart RL; Brandon SC; Smith CR; Novacheck TF; Schwartz MH; Thelen DG
    J Biomech; 2017 Jan; 51():1-7. PubMed ID: 27939752
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A biomechanical evaluation of hinged total knee replacement prostheses.
    Long R; Gheduzzi S; Bucher TA; Toms AD; Miles AW
    Proc Inst Mech Eng H; 2013 Aug; 227(8):875-83. PubMed ID: 23722496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patellofemoral forces after total knee arthroplasty: effect of extensor moment arm.
    Browne C; Hermida JC; Bergula A; Colwell CW; D'Lima DD
    Knee; 2005 Apr; 12(2):81-8. PubMed ID: 15749440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Normative three-dimensional patellofemoral and tibiofemoral kinematics: a dynamic, in vivo study.
    Seisler AR; Sheehan FT
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1333-41. PubMed ID: 17605365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patellofemoral kinematics during knee flexion-extension: an in vitro study.
    Amis AA; Senavongse W; Bull AM
    J Orthop Res; 2006 Dec; 24(12):2201-11. PubMed ID: 17004269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The human patellar tendon moment arm assessed in vivo using dual-energy X-ray absorptiometry.
    Erskine RM; Morse CI; Day SH; Williams AG; Onambele-Pearson GL
    J Biomech; 2014 Apr; 47(6):1294-8. PubMed ID: 24612717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Position of the quadriceps actuator influences knee loads during simulated squat testing.
    Hast MW; Piazza SJ
    J Biomech; 2018 May; 73():227-232. PubMed ID: 29576314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiplane loading of the extensor mechanism alters the patellar ligament force/quadriceps force ratio.
    Powers CM; Chen YJ; Scher IS; Lee TQ
    J Biomech Eng; 2010 Feb; 132(2):024503. PubMed ID: 20370249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The 3D patellar tendon moment arm: quantified in vivo during volitional activity.
    Sheehan FT
    J Biomech; 2007; 40(9):1968-74. PubMed ID: 17161841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of the sagittal plane malpositioning of the patella and concomitant quadriceps hypotrophy on the patellofemoral joint: a finite element analysis.
    Aksahin E; Kocadal O; Aktekin CN; Kaya D; Pepe M; Yılmaz S; Yuksel HY; Bicimoglu A
    Knee Surg Sports Traumatol Arthrosc; 2016 Mar; 24(3):903-8. PubMed ID: 25398369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of asymmetric quadriceps loading on patellar tracking--an in vitro study.
    Lorenz A; Müller O; Kohler P; Wünschel M; Wülker N; Leichtle UG
    Knee; 2012 Dec; 19(6):818-22. PubMed ID: 22633902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous in vitro measurement of patellofemoral kinematics and forces.
    Zavatsky AB; Oppold PT; Price AJ
    J Biomech Eng; 2004 Jun; 126(3):351-6. PubMed ID: 15341172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How does patellar tendon advancement alter the knee extensor mechanism in children treated for crouch gait?
    Bittmann MF; Lenhart RL; Schwartz MH; Novacheck TF; Hetzel S; Thelen DG
    Gait Posture; 2018 Jul; 64():248-254. PubMed ID: 29958159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic measurement of patellofemoral kinematics and contact pressure after lateral retinacular release: an in vitro study.
    Ostermeier S; Holst M; Hurschler C; Windhagen H; Stukenborg-Colsman C
    Knee Surg Sports Traumatol Arthrosc; 2007 May; 15(5):547-54. PubMed ID: 17225178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Moment arm of the knee-extensor mechanism measured in vivo across a range of daily activities.
    Gray HA; Guan S; Thomeer LT; Pandy MG
    J Biomech; 2021 Jun; 123():110484. PubMed ID: 34062347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro forces in the normal and cruciate-deficient knee during simulated squatting motion.
    Singerman R; Berilla J; Archdeacon M; Peyser A
    J Biomech Eng; 1999 Apr; 121(2):234-42. PubMed ID: 10211459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A planar model of the knee joint to characterize the knee extensor mechanism.
    Yamaguchi GT; Zajac FE
    J Biomech; 1989; 22(1):1-10. PubMed ID: 2914967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanics of the knee joint in flexion under various quadriceps forces.
    Mesfar W; Shirazi-Adl A
    Knee; 2005 Dec; 12(6):424-34. PubMed ID: 15939592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanical analysis of the single-leg decline squat.
    Zwerver J; Bredeweg SW; Hof AL
    Br J Sports Med; 2007 Apr; 41(4):264-8; discussion 268. PubMed ID: 17224441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.