BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 26521072)

  • 1. Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation.
    Mossakowski AA; Pohlan J; Bremer D; Lindquist R; Millward JM; Bock M; Pollok K; Mothes R; Viohl L; Radbruch M; Gerhard J; Bellmann-Strobl J; Behrens J; Infante-Duarte C; Mähler A; Boschmann M; Rinnenthal JL; Füchtemeier M; Herz J; Pache FC; Bardua M; Priller J; Hauser AE; Paul F; Niesner R; Radbruch H
    Acta Neuropathol; 2015 Dec; 130(6):799-814. PubMed ID: 26521072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ongoing Oxidative Stress Causes Subclinical Neuronal Dysfunction in the Recovery Phase of EAE.
    Radbruch H; Bremer D; Guenther R; Cseresnyes Z; Lindquist R; Hauser AE; Niesner R
    Front Immunol; 2016; 7():92. PubMed ID: 27014271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment of Chronic Experimental Autoimmune Encephalomyelitis with Epigallocatechin-3-Gallate and Glatiramer Acetate Alters Expression of Heme-Oxygenase-1.
    Janssen A; Fiebiger S; Bros H; Hertwig L; Romero-Suarez S; Hamann I; Chanvillard C; Bellmann-Strobl J; Paul F; Millward JM; Infante-Duarte C
    PLoS One; 2015; 10(6):e0130251. PubMed ID: 26114502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway.
    Linker RA; Lee DH; Ryan S; van Dam AM; Conrad R; Bista P; Zeng W; Hronowsky X; Buko A; Chollate S; Ellrichmann G; Brück W; Dawson K; Goelz S; Wiese S; Scannevin RH; Lukashev M; Gold R
    Brain; 2011 Mar; 134(Pt 3):678-92. PubMed ID: 21354971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroprotective Effects of Melatonin on Experimental Allergic Encephalomyelitis Mice Via Anti-Oxidative Stress Activity.
    Long T; Yang Y; Peng L; Li Z
    J Mol Neurosci; 2018 Feb; 64(2):233-241. PubMed ID: 29450696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH oxidases as drug targets and biomarkers in neurodegenerative diseases: What is the evidence?
    Sorce S; Stocker R; Seredenina T; Holmdahl R; Aguzzi A; Chio A; Depaulis A; Heitz F; Olofsson P; Olsson T; Duveau V; Sanoudou D; Skosgater S; Vlahou A; Wasquel D; Krause KH; Jaquet V
    Free Radic Biol Med; 2017 Nov; 112():387-396. PubMed ID: 28811143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing Nicotinamide Adenine Dinucleotide Phosphate Oxidase Activation in Aging and Vascular Amyloid Pathology.
    Radbruch H; Mothes R; Bremer D; Seifert S; Köhler R; Pohlan J; Ostendorf L; Günther R; Leben R; Stenzel W; Niesner RA; Hauser AE
    Front Immunol; 2017; 8():844. PubMed ID: 28824611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistent activation of microglia and NADPH oxidase [corrected] drive hippocampal dysfunction in experimental multiple sclerosis.
    Di Filippo M; de Iure A; Giampà C; Chiasserini D; Tozzi A; Orvietani PL; Ghiglieri V; Tantucci M; Durante V; Quiroga-Varela A; Mancini A; Costa C; Sarchielli P; Fusco FR; Calabresi P
    Sci Rep; 2016 Feb; 6():20926. PubMed ID: 26887636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disease progression after bone marrow transplantation in a model of multiple sclerosis is associated with chronic microglial and glial progenitor response.
    Cassiani-Ingoni R; Muraro PA; Magnus T; Reichert-Scrivner S; Schmidt J; Huh J; Quandt JA; Bratincsak A; Shahar T; Eusebi F; Sherman LS; Mattson MP; Martin R; Rao MS
    J Neuropathol Exp Neurol; 2007 Jul; 66(7):637-49. PubMed ID: 17620989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual roles of the adenosine A2a receptor in autoimmune neuroinflammation.
    Ingwersen J; Wingerath B; Graf J; Lepka K; Hofrichter M; Schröter F; Wedekind F; Bauer A; Schrader J; Hartung HP; Prozorovski T; Aktas O
    J Neuroinflammation; 2016 Feb; 13():48. PubMed ID: 26920550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of oxidative stress p38MAPK-SGK1 signaling axis in experimental autoimmune encephalomyelitis (EAE).
    Wang L; Li B; Quan MY; Li L; Chen Y; Tan GJ; Zhang J; Liu XP; Guo L
    Oncotarget; 2017 Jun; 8(26):42808-42816. PubMed ID: 28467798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcript analysis of laser capture microdissected white matter astrocytes and higher phenol sulfotransferase 1A1 expression during autoimmune neuroinflammation.
    Guillot F; Garcia A; Salou M; Brouard S; Laplaud DA; Nicot AB
    J Neuroinflammation; 2015 Jul; 12():130. PubMed ID: 26141738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute treatment with valproic acid and l-thyroxine ameliorates clinical signs of experimental autoimmune encephalomyelitis and prevents brain pathology in DA rats.
    Castelo-Branco G; Stridh P; Guerreiro-Cacais AO; Adzemovic MZ; Falcão AM; Marta M; Berglund R; Gillett A; Hamza KH; Lassmann H; Hermanson O; Jagodic M
    Neurobiol Dis; 2014 Nov; 71():220-33. PubMed ID: 25149263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis.
    Forte M; Gold BG; Marracci G; Chaudhary P; Basso E; Johnsen D; Yu X; Fowlkes J; Rahder M; Stem K; Bernardi P; Bourdette D
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7558-63. PubMed ID: 17463082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and activation of matrix metalloproteinase-9 and NADPH oxidase in tissues and plasma of experimental autoimmune encephalomyelitis in mice.
    Kandagaddala LD; Kang MJ; Chung BC; Patterson TA; Kwon OS
    Exp Toxicol Pathol; 2012 Jan; 64(1-2):109-14. PubMed ID: 20810258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of uric acid treatments on liver glutathione system prevent oxidative damages in experimental autoimmune encephalomyelitis mice.
    Allameh A; Maleklou N; Zargari M; Sanati MH
    Neurosci Lett; 2008 Jul; 439(1):111-5. PubMed ID: 18501514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interleukin-33 is released in spinal cord and suppresses experimental autoimmune encephalomyelitis in mice.
    Chen H; Sun Y; Lai L; Wu H; Xiao Y; Ming B; Gao M; Zou H; Xiong P; Xu Y; Tan Z; Gong F; Zheng F
    Neuroscience; 2015 Nov; 308():157-68. PubMed ID: 26363151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HMGB1 expression patterns during the progression of experimental autoimmune encephalomyelitis.
    Sun Y; Chen H; Dai J; Zou H; Gao M; Wu H; Ming B; Lai L; Xiao Y; Xiong P; Xu Y; Gong F; Zheng F
    J Neuroimmunol; 2015 Mar; 280():29-35. PubMed ID: 25773152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed.
    Vainchtein ID; Vinet J; Brouwer N; Brendecke S; Biagini G; Biber K; Boddeke HW; Eggen BJ
    Glia; 2014 Oct; 62(10):1724-35. PubMed ID: 24953459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of endogenous Type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis.
    Khorooshi R; Mørch MT; Holm TH; Berg CT; Dieu RT; Dræby D; Issazadeh-Navikas S; Weiss S; Lienenklaus S; Owens T
    Acta Neuropathol; 2015 Jul; 130(1):107-18. PubMed ID: 25869642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.