These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26521688)

  • 1. Predicting High Imaging Utilization Based on Initial Radiology Reports: A Feasibility Study of Machine Learning.
    Hassanpour S; Langlotz CP
    Acad Radiol; 2016 Jan; 23(1):84-9. PubMed ID: 26521688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of a Machine Learning Classifier of Knee MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield.
    Hassanpour S; Langlotz CP; Amrhein TJ; Befera NT; Lungren MP
    AJR Am J Roentgenol; 2017 Apr; 208(4):750-753. PubMed ID: 28140627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural Language Processing of Radiology Reports in Patients With Hepatocellular Carcinoma to Predict Radiology Resource Utilization.
    Brown AD; Kachura JR
    J Am Coll Radiol; 2019 Jun; 16(6):840-844. PubMed ID: 30833164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal bone radiology report classification using open source machine learning and natural langue processing libraries.
    Masino AJ; Grundmeier RW; Pennington JW; Germiller JA; Crenshaw EB
    BMC Med Inform Decis Mak; 2016 Jun; 16():65. PubMed ID: 27267768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic detection of patients with invasive fungal disease from free-text computed tomography (CT) scans.
    Martinez D; Ananda-Rajah MR; Suominen H; Slavin MA; Thursky KA; Cavedon L
    J Biomed Inform; 2015 Feb; 53():251-60. PubMed ID: 25460203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A natural language processing pipeline for pairing measurements uniquely across free-text CT reports.
    Sevenster M; Bozeman J; Cowhy A; Trost W
    J Biomed Inform; 2015 Feb; 53():36-48. PubMed ID: 25200472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Outcome Classification of Computed Tomography Imaging Reports for Pediatric Traumatic Brain Injury.
    Yadav K; Sarioglu E; Choi HA; Cartwright WB; Hinds PS; Chamberlain JM
    Acad Emerg Med; 2016 Feb; 23(2):171-8. PubMed ID: 26766600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Incidental Pulmonary Nodules in Free-text Radiology Reports: An Initial Investigation.
    Oliveira L; Tellis R; Qian Y; Trovato K; Mankovich G
    Stud Health Technol Inform; 2015; 216():1027. PubMed ID: 26262327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised Topic Modeling in a Large Free Text Radiology Report Repository.
    Hassanpour S; Langlotz CP
    J Digit Imaging; 2016 Feb; 29(1):59-62. PubMed ID: 26353748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Natural Language Processing-based Model to Automate MRI Brain Protocol Selection and Prioritization.
    Brown AD; Marotta TR
    Acad Radiol; 2017 Feb; 24(2):160-166. PubMed ID: 27889399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Change and Significance for Clinical Findings in Radiology Reports Through Natural Language Processing.
    Hassanpour S; Bay G; Langlotz CP
    J Digit Imaging; 2017 Jun; 30(3):314-322. PubMed ID: 28050714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Language-based Machine Learning Models for the Annotation of Clinical Radiology Reports.
    Zech J; Pain M; Titano J; Badgeley M; Schefflein J; Su A; Costa A; Bederson J; Lehar J; Oermann EK
    Radiology; 2018 May; 287(2):570-580. PubMed ID: 29381109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating Report Text Variation and Informativeness: Natural Language Processing of CT Chest Imaging for Pulmonary Embolism.
    Huesch MD; Cherian R; Labib S; Mahraj R
    J Am Coll Radiol; 2018 Mar; 15(3 Pt B):554-562. PubMed ID: 29396123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural Language Processing Techniques for Extracting and Categorizing Finding Measurements in Narrative Radiology Reports.
    Sevenster M; Buurman J; Liu P; Peters JF; Chang PJ
    Appl Clin Inform; 2015; 6(3):600-110. PubMed ID: 26448801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supervised machine learning and active learning in classification of radiology reports.
    Nguyen DH; Patrick JD
    J Am Med Inform Assoc; 2014; 21(5):893-901. PubMed ID: 24853067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency of radiology self-referral in abdominal computed tomographic scans and the implied cost.
    Blaivas M; Lyon M
    Am J Emerg Med; 2007 May; 25(4):396-9. PubMed ID: 17499656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducing Unnecessary Portable Pelvic Radiographs in Trauma Patients: A Resident-Driven Quality Improvement Initiative.
    Langer JM; Tsai EB; Luhar A; McWilliams J; Motamedi K
    J Am Coll Radiol; 2015 Sep; 12(9):954-9. PubMed ID: 25868670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximizing lipocalin prediction through balanced and diversified training set and decision fusion.
    Nath A; Subbiah K
    Comput Biol Chem; 2015 Dec; 59 Pt A():101-10. PubMed ID: 26433483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Machine Learning to Identify Follow-Up Recommendations in Radiology Reports.
    Carrodeguas E; Lacson R; Swanson W; Khorasani R
    J Am Coll Radiol; 2019 Mar; 16(3):336-343. PubMed ID: 30600162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of Natural Language Processing-Assisted Auditing of Critical Findings in Chest Radiology.
    Heilbrun ME; Chapman BE; Narasimhan E; Patel N; Mowery D
    J Am Coll Radiol; 2019 Sep; 16(9 Pt B):1299-1304. PubMed ID: 31229439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.