These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 26521937)

  • 1. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system.
    Wong N; Liu W; Wang X
    Genome Biol; 2015 Nov; 16():218. PubMed ID: 26521937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency.
    Hiranniramol K; Chen Y; Liu W; Wang X
    Bioinformatics; 2020 May; 36(9):2684-2689. PubMed ID: 31971562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quick guide to CRISPR sgRNA design tools.
    Brazelton VA; Zarecor S; Wright DA; Wang Y; Liu J; Chen K; Yang B; Lawrence-Dill CJ
    GM Crops Food; 2015; 6(4):266-76. PubMed ID: 26745836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein engineering of Cas9 for enhanced function.
    Oakes BL; Nadler DC; Savage DF
    Methods Enzymol; 2014; 546():491-511. PubMed ID: 25398355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation.
    Liu H; Wei Z; Dominguez A; Li Y; Wang X; Qi LS
    Bioinformatics; 2015 Nov; 31(22):3676-8. PubMed ID: 26209430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP; Prew MS; Tsai SQ; Topkar VV; Nguyen NT; Zheng Z; Gonzales AP; Li Z; Peterson RT; Yeh JR; Aryee MJ; Joung JK
    Nature; 2015 Jul; 523(7561):481-5. PubMed ID: 26098369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of CRISPR/Cas9 genome editing to the study and treatment of disease.
    Pellagatti A; Dolatshad H; Valletta S; Boultwood J
    Arch Toxicol; 2015 Jul; 89(7):1023-34. PubMed ID: 25827103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency.
    Dang Y; Jia G; Choi J; Ma H; Anaya E; Ye C; Shankar P; Wu H
    Genome Biol; 2015 Dec; 16():280. PubMed ID: 26671237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved sgRNA design in bacteria via genome-wide activity profiling.
    Guo J; Wang T; Guan C; Liu B; Luo C; Xie Z; Zhang C; Xing XH
    Nucleic Acids Res; 2018 Aug; 46(14):7052-7069. PubMed ID: 29982721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems.
    Fonfara I; Le Rhun A; Chylinski K; Makarova KS; Lécrivain AL; Bzdrenga J; Koonin EV; Charpentier E
    Nucleic Acids Res; 2014 Feb; 42(4):2577-90. PubMed ID: 24270795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication.
    Dong C; Qu L; Wang H; Wei L; Dong Y; Xiong S
    Antiviral Res; 2015 Jun; 118():110-7. PubMed ID: 25843425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity.
    Carrington B; Varshney GK; Burgess SM; Sood R
    Nucleic Acids Res; 2015 Dec; 43(22):e157. PubMed ID: 26253739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CRISPR-Cas system for plant genome editing: advances and opportunities.
    Kumar V; Jain M
    J Exp Bot; 2015 Jan; 66(1):47-57. PubMed ID: 25371501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-guided genome editing in plants using a CRISPR-Cas system.
    Xie K; Yang Y
    Mol Plant; 2013 Nov; 6(6):1975-83. PubMed ID: 23956122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-RT: a web application for designing CRISPR-C2c2 crRNA with improved target specificity.
    Zhu H; Richmond E; Liang C
    Bioinformatics; 2018 Jan; 34(1):117-119. PubMed ID: 28968770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting.
    Zhou J; Wang J; Shen B; Chen L; Su Y; Yang J; Zhang W; Tian X; Huang X
    FEBS J; 2014 Apr; 281(7):1717-25. PubMed ID: 24494965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GUIDEseq: a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases.
    Zhu LJ; Lawrence M; Gupta A; Pagès H; Kucukural A; Garber M; Wolfe SA
    BMC Genomics; 2017 May; 18(1):379. PubMed ID: 28506212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rescue of high-specificity Cas9 variants using sgRNAs with matched 5' nucleotides.
    Kim S; Bae T; Hwang J; Kim JS
    Genome Biol; 2017 Nov; 18(1):218. PubMed ID: 29141659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction.
    Singh R; Kuscu C; Quinlan A; Qi Y; Adli M
    Nucleic Acids Res; 2015 Oct; 43(18):e118. PubMed ID: 26032770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cas9 specifies functional viral targets during CRISPR-Cas adaptation.
    Heler R; Samai P; Modell JW; Weiner C; Goldberg GW; Bikard D; Marraffini LA
    Nature; 2015 Mar; 519(7542):199-202. PubMed ID: 25707807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.