These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 26522072)
1. 70-kDa heat shock protein coated magnetic nanocarriers as a nanovaccine for induction of anti-tumor immune response in experimental glioma. Shevtsov MA; Nikolaev BP; Yakovleva LY; Parr MA; Marchenko YY; Eliseev I; Yudenko A; Dobrodumov AV; Zlobina O; Zhakhov A; Ischenko AM; Pitkin E; Multhoff G J Control Release; 2015 Dec; 220(Pt A):329-340. PubMed ID: 26522072 [TBL] [Abstract][Full Text] [Related]
2. Effective immunotherapy of rat glioblastoma with prolonged intratumoral delivery of exogenous heat shock protein Hsp70. Shevtsov MA; Pozdnyakov AV; Mikhrina AL; Yakovleva LY; Nikolaev BP; Dobrodumov AV; Komarova EY; Meshalkina DA; Ischenko AM; Pitkin E; Guzhova IV; Margulis BA Int J Cancer; 2014 Nov; 135(9):2118-28. PubMed ID: 24691976 [TBL] [Abstract][Full Text] [Related]
3. Tumor targeting using magnetic nanoparticle Hsp70 conjugate in a model of C6 glioma. Shevtsov MA; Yakovleva LY; Nikolaev BP; Marchenko YY; Dobrodumov AV; Onokhin KV; Onokhina YS; Selkov SA; Mikhrina AL; Guzhova IV; Martynova MG; Bystrova OA; Ischenko AM; Margulis BA Neuro Oncol; 2014 Jan; 16(1):38-49. PubMed ID: 24305705 [TBL] [Abstract][Full Text] [Related]
4. Ionizing radiation improves glioma-specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHsp70.1 monoclonal antibodies (SPION-cmHsp70.1). Shevtsov MA; Nikolaev BP; Ryzhov VA; Yakovleva LY; Marchenko YY; Parr MA; Rolich VI; Mikhrina AL; Dobrodumov AV; Pitkin E; Multhoff G Nanoscale; 2015 Dec; 7(48):20652-64. PubMed ID: 26599206 [TBL] [Abstract][Full Text] [Related]
5. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors. Shevtsov MA; Nikolaev BP; Yakovleva LY; Marchenko YY; Dobrodumov AV; Mikhrina AL; Martynova MG; Bystrova OA; Yakovenko IV; Ischenko AM Int J Nanomedicine; 2014; 9():273-87. PubMed ID: 24421639 [TBL] [Abstract][Full Text] [Related]
6. Enhanced generation of cytotoxic T lymphocytes by heat shock protein 70 fusion proteins harboring both CD8(+) T cell and CD4(+) T cell epitopes. Takemoto S; Nishikawa M; Guan X; Ohno Y; Yata T; Takakura Y Mol Pharm; 2010 Oct; 7(5):1715-23. PubMed ID: 20695521 [TBL] [Abstract][Full Text] [Related]
7. Generation of anti-tumor immunity using mammalian heat shock protein 70 DNA vaccines for cancer immunotherapy. Li Y; Subjeck J; Yang G; Repasky E; Wang XY Vaccine; 2006 Jun; 24(25):5360-70. PubMed ID: 16714072 [TBL] [Abstract][Full Text] [Related]
8. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs). Shevtsov M; Nikolaev B; Marchenko Y; Yakovleva L; Skvortsov N; Mazur A; Tolstoy P; Ryzhov V; Multhoff G Int J Nanomedicine; 2018; 13():1471-1482. PubMed ID: 29559776 [TBL] [Abstract][Full Text] [Related]
9. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Crane CA; Han SJ; Ahn B; Oehlke J; Kivett V; Fedoroff A; Butowski N; Chang SM; Clarke J; Berger MS; McDermott MW; Prados MD; Parsa AT Clin Cancer Res; 2013 Jan; 19(1):205-14. PubMed ID: 22872572 [TBL] [Abstract][Full Text] [Related]
10. Exosomes from Dendritic Cells Loaded with Chaperone-Rich Cell Lysates Elicit a Potent T Cell Immune Response Against Intracranial Glioma in Mice. Bu N; Wu H; Zhang G; Zhan S; Zhang R; Sun H; Du Y; Yao L; Wang H J Mol Neurosci; 2015 Jul; 56(3):631-43. PubMed ID: 25680514 [TBL] [Abstract][Full Text] [Related]
11. Monoclonal antibody-conjugated superparamagnetic iron oxide nanoparticles for imaging of epidermal growth factor receptor-targeted cells and gliomas. Mu K; Zhang S; Ai T; Jiang J; Yao Y; Jiang L; Zhou Q; Xiang H; Zhu Y; Yang X; Zhu W Mol Imaging; 2015; 14():. PubMed ID: 26044549 [TBL] [Abstract][Full Text] [Related]
12. T cell activation by heat shock protein 70 vaccine requires TLR signaling and scavenger receptor expressed by endothelial cells-1. Gong J; Zhu B; Murshid A; Adachi H; Song B; Lee A; Liu C; Calderwood SK J Immunol; 2009 Sep; 183(5):3092-8. PubMed ID: 19641135 [TBL] [Abstract][Full Text] [Related]
13. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Garg AD; Vandenberk L; Koks C; Verschuere T; Boon L; Van Gool SW; Agostinis P Sci Transl Med; 2016 Mar; 8(328):328ra27. PubMed ID: 26936504 [TBL] [Abstract][Full Text] [Related]
14. Enhanced antitumor immunity of nanoliposome-encapsulated heat shock protein 70 peptide complex derived from dendritic tumor fusion cells. Zhang Y; Luo W; Wang Y; Chen J; Liu Y; Zhang Y Oncol Rep; 2015 Jun; 33(6):2695-702. PubMed ID: 25963968 [TBL] [Abstract][Full Text] [Related]
15. Detection of experimental myocardium infarction in rats by MRI using heat shock protein 70 conjugated superparamagnetic iron oxide nanoparticle. Shevtsov MA; Nikolaev BP; Ryzhov VA; Yakovleva LY; Dobrodumov AV; Marchenko YY; Margulis BA; Pitkin E; Mikhrina AL; Guzhova IV; Multhoff G Nanomedicine; 2016 Apr; 12(3):611-621. PubMed ID: 26656626 [TBL] [Abstract][Full Text] [Related]
16. Immunization with antigenic peptides complexed with β-glucan induces potent cytotoxic T-lymphocyte activity in combination with CpG-ODNs. Mochizuki S; Morishita H; Kobiyama K; Aoshi T; Ishii KJ; Sakurai K J Control Release; 2015 Dec; 220(Pt A):495-502. PubMed ID: 26562685 [TBL] [Abstract][Full Text] [Related]
17. [The role of extracellular chaperone Hsp70 in creating antitumor immunity in rat rhabdomyosarcoma RA-2 model]. Guzhova IV; Komarova EIu; Pimenova AA; Bakhtin IuB; Kaminskaia EV; Margulis BA Vopr Onkol; 2008; 54(5):611-7. PubMed ID: 19069476 [TBL] [Abstract][Full Text] [Related]
18. Endoplasmic reticulum chaperone glucose regulated protein 170-Pokemon complexes elicit a robust antitumor immune response in vivo. Yuan B; Xian R; Wu X; Jing J; Chen K; Liu G; Zhou Z Immunobiology; 2012 Jul; 217(7):738-42. PubMed ID: 22317751 [TBL] [Abstract][Full Text] [Related]
19. Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. Wang XY; Kazim L; Repasky EA; Subjeck JR J Immunol; 2001 Jan; 166(1):490-7. PubMed ID: 11123328 [TBL] [Abstract][Full Text] [Related]
20. Targeted immunotherapy using reconstituted chaperone complexes of heat shock protein 110 and melanoma-associated antigen gp100. Wang XY; Chen X; Manjili MH; Repasky E; Henderson R; Subjeck JR Cancer Res; 2003 May; 63(10):2553-60. PubMed ID: 12750279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]