BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26522225)

  • 1. Inhibition of the 26S proteasome by peptide mimics of the coiled-coil region of its ATPase subunits.
    Inobe T; Genmei R
    Biochem Biophys Res Commun; 2015 Dec 4-11; 468(1-2):143-50. PubMed ID: 26522225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-Terminal Coiled-Coil Structure of ATPase Subunits of 26S Proteasome Is Crucial for Proteasome Function.
    Inobe T; Genmei R
    PLoS One; 2015; 10(7):e0134056. PubMed ID: 26208326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational switching in the coiled-coil domains of a proteasomal ATPase regulates substrate processing.
    Snoberger A; Brettrager EJ; Smith DM
    Nat Commun; 2018 Jun; 9(1):2374. PubMed ID: 29915197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-Terminal methylation of proteasome subunit Rpt1 in yeast.
    Kimura Y; Kurata Y; Ishikawa A; Okayama A; Kamita M; Hirano H
    Proteomics; 2013 Nov; 13(21):3167-74. PubMed ID: 24038880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa.
    Sutter M; Striebel F; Damberger FF; Allain FH; Weber-Ban E
    FEBS Lett; 2009 Oct; 583(19):3151-7. PubMed ID: 19761766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The N-terminal coiled coil of the Rhodococcus erythropolis ARC AAA ATPase is neither necessary for oligomerization nor nucleotide hydrolysis.
    Zhang X; Stoffels K; Wurzbacher S; Schoofs G; Pfeifer G; Banerjee T; Parret AH; Baumeister W; De Mot R; Zwickl P
    J Struct Biol; 2004; 146(1-2):155-65. PubMed ID: 15037247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptido sulfonyl fluorides as new powerful proteasome inhibitors.
    Brouwer AJ; Jonker A; Werkhoven P; Kuo E; Li N; Gallastegui N; Kemmink J; Florea BI; Groll M; Overkleeft HS; Liskamp RM
    J Med Chem; 2012 Dec; 55(24):10995-1003. PubMed ID: 23170994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases.
    Park Y; Hwang YP; Lee JS; Seo SH; Yoon SK; Yoon JB
    Mol Cell Biol; 2005 May; 25(9):3842-53. PubMed ID: 15831487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus.
    Striebel F; Hunkeler M; Summer H; Weber-Ban E
    EMBO J; 2010 Apr; 29(7):1262-71. PubMed ID: 20203624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases.
    Djuranovic S; Hartmann MD; Habeck M; Ursinus A; Zwickl P; Martin J; Lupas AN; Zeth K
    Mol Cell; 2009 Jun; 34(5):580-90. PubMed ID: 19481487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails.
    Lee SH; Moon JH; Yoon SK; Yoon JB
    J Biol Chem; 2012 Mar; 287(12):9269-79. PubMed ID: 22275368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the human 26S proteasome at a resolution of 3.9 Å.
    Schweitzer A; Aufderheide A; Rudack T; Beck F; Pfeifer G; Plitzko JM; Sakata E; Schulten K; Förster F; Baumeister W
    Proc Natl Acad Sci U S A; 2016 Jul; 113(28):7816-21. PubMed ID: 27342858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C-terminal trans,trans-muconic acid ethyl ester partial retro-inverso pseudopeptides as proteasome inhibitors.
    Franceschini C; Trapella C; Calia R; Scotti A; Sforza F; Gavioli R; Marastoni M
    J Enzyme Inhib Med Chem; 2013 Oct; 28(5):1034-9. PubMed ID: 22871133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An empirical energy landscape reveals mechanism of proteasome in polypeptide translocation.
    Fang R; Hon J; Zhou M; Lu Y
    Elife; 2022 Jan; 11():. PubMed ID: 35050852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mycobacterial proteasomal ATPase Mpa forms a gapped ring to engage the 20S proteasome.
    Yin Y; Kovach A; Hsu HC; Darwin KH; Li H
    J Biol Chem; 2021; 296():100713. PubMed ID: 33930464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncoupling proteasome peptidase and ATPase activities results in cytosolic release of an ER polytopic protein.
    Oberdorf J; Carlson EJ; Skach WR
    J Cell Sci; 2006 Jan; 119(Pt 2):303-13. PubMed ID: 16390870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational inhibition studies of the human proteasome by argyrin-based analogues with subunit specificity.
    Loizidou EZ; Zeinalipour-Yazdi CD
    Chem Biol Drug Des; 2014 Jul; 84(1):99-107. PubMed ID: 24521156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic Analyses of Substrate Preferences of 20S Proteasomes Using Peptidic Epoxyketone Inhibitors.
    Huber EM; de Bruin G; Heinemeyer W; Paniagua Soriano G; Overkleeft HS; Groll M
    J Am Chem Soc; 2015 Jun; 137(24):7835-42. PubMed ID: 26020686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry.
    Smith DM; Chang SC; Park S; Finley D; Cheng Y; Goldberg AL
    Mol Cell; 2007 Sep; 27(5):731-44. PubMed ID: 17803938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted.
    Löwe J; Cordell SC; van den Ent F
    J Mol Biol; 2001 Feb; 306(1):25-35. PubMed ID: 11178891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.