BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 26522263)

  • 1. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Investigation of Multidimensional Voice Program Parameters in Three Different Databases for Voice Pathology Detection and Classification.
    Al-Nasheri A; Muhammad G; Alsulaiman M; Ali Z; Mesallam TA; Farahat M; Malki KH; Bencherif MA
    J Voice; 2017 Jan; 31(1):113.e9-113.e18. PubMed ID: 27105857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Voice Pathology Detection and Classification on Different Frequency Regions Using Correlation Functions.
    Al-Nasheri A; Muhammad G; Alsulaiman M; Ali Z
    J Voice; 2017 Jan; 31(1):3-15. PubMed ID: 26992554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multidirectional regression (MDR)-based features for automatic voice disorder detection.
    Muhammad G; Mesallam TA; Malki KH; Farahat M; Mahmood A; Alsulaiman M
    J Voice; 2012 Nov; 26(6):817.e19-27. PubMed ID: 23177748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intra- and Inter-database Study for Arabic, English, and German Databases: Do Conventional Speech Features Detect Voice Pathology?
    Ali Z; Alsulaiman M; Muhammad G; Elamvazuthi I; Al-Nasheri A; Mesallam TA; Farahat M; Malki KH
    J Voice; 2017 May; 31(3):386.e1-386.e8. PubMed ID: 27745756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the Arabic Voice Pathology Database and Its Evaluation by Using Speech Features and Machine Learning Algorithms.
    Mesallam TA; Farahat M; Malki KH; Alsulaiman M; Ali Z; Al-Nasheri A; Muhammad G
    J Healthc Eng; 2017; 2017():8783751. PubMed ID: 29201333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using modulation spectra for voice pathology detection and classification.
    Markaki M; Stylianou Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2514-7. PubMed ID: 19964970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On combining information from modulation spectra and mel-frequency cepstral coefficients for automatic detection of pathological voices.
    Arias-Londoño JD; Godino-Llorente JI; Markaki M; Stylianou Y
    Logoped Phoniatr Vocol; 2011 Jul; 36(2):60-9. PubMed ID: 21073260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Classification and System Combination for Automatically Identifying Physiological and Neuromuscular Laryngeal Pathologies.
    Cordeiro H; Fonseca J; Guimarães I; Meneses C
    J Voice; 2017 May; 31(3):384.e9-384.e14. PubMed ID: 27743845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination between pathological and normal voices using GMM-SVM approach.
    Wang X; Zhang J; Yan Y
    J Voice; 2011 Jan; 25(1):38-43. PubMed ID: 20137892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Pathological Voice Using Cepstrum Vectors: A Deep Learning Approach.
    Fang SH; Tsao Y; Hsiao MJ; Chen JY; Lai YH; Lin FC; Wang CT
    J Voice; 2019 Sep; 33(5):634-641. PubMed ID: 29567049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparison of Cepstral Peak Prominence Measures From Two Acoustic Analysis Programs.
    Watts CR; Awan SN; Maryn Y
    J Voice; 2017 May; 31(3):387.e1-387.e10. PubMed ID: 27751661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors.
    Godino-Llorente JI; Gómez-Vilda P
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):380-4. PubMed ID: 14765711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of the Cepstral Spectral Index of Dysphonia (CSID) as a Screening Tool for Voice Disorders: Development of Clinical Cutoff Scores.
    Awan SN; Roy N; Zhang D; Cohen SM
    J Voice; 2016 Mar; 30(2):130-44. PubMed ID: 26361215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voice pathology detection based eon short-term jitter estimations in running speech.
    Vasilakis M; Stylianou Y
    Folia Phoniatr Logop; 2009; 61(3):153-70. PubMed ID: 19571550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards objective evaluation of perceived roughness and breathiness: an approach based on mel-frequency cepstral analysis.
    Sáenz-Lechón N; Fraile R; Godino-Llorente JI; Fernández-Baíllo R; Osma-Ruiz V; Gutiérrez-Arriola JM; Arias-Londoño JD
    Logoped Phoniatr Vocol; 2011 Jul; 36(2):52-9. PubMed ID: 20849245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of audio compression in automatic detection of voice pathologies.
    Sáenz-Lechón N; Osma-Ruiz V; Godino-Llorente JI; Blanco-Velasco M; Cruz-Roldán F; Arias-Londoño JD
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2831-5. PubMed ID: 19126465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voice source characterization using pitch synchronous discrete cosine transform for speaker identification.
    Ramakrishnan AG; Abhiram B; Prasanna SR
    J Acoust Soc Am; 2015 Jun; 137(6):EL469-75. PubMed ID: 26093457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Objective Parameter for Quantifying the Turbulent Noise Portion of Voice Signals.
    Lin L; Calawerts W; Dodd K; Jiang JJ
    J Voice; 2016 Nov; 30(6):664-669. PubMed ID: 26474718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels.
    Maryn Y; Corthals P; Van Cauwenberge P; Roy N; De Bodt M
    J Voice; 2010 Sep; 24(5):540-55. PubMed ID: 19883993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.