These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26522273)

  • 1. Helix 3 acts as a conformational hinge in Class A GPCR activation: An analysis of interhelical interaction energies in crystal structures.
    Lans I; Dalton JAR; Giraldo J
    J Struct Biol; 2015 Dec; 192(3):545-553. PubMed ID: 26522273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway.
    Yuan S; Filipek S; Palczewski K; Vogel H
    Nat Commun; 2014 Sep; 5():4733. PubMed ID: 25203160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relevance of rhodopsin studies for GPCR activation.
    Deupi X
    Biochim Biophys Acta; 2014 May; 1837(5):674-82. PubMed ID: 24041646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common and distinct mechanisms of activation of rhodopsin and other G protein-coupled receptors.
    Nakamura S; Itabashi T; Ogawa D; Okada T
    Sci Rep; 2013; 3():1844. PubMed ID: 23677071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray structure breakthroughs in the GPCR transmembrane region.
    Topiol S; Sabio M
    Biochem Pharmacol; 2009 Jul; 78(1):11-20. PubMed ID: 19447219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation.
    Lebon G; Warne T; Edwards PC; Bennett K; Langmead CJ; Leslie AG; Tate CG
    Nature; 2011 May; 474(7352):521-5. PubMed ID: 21593763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastic network normal mode dynamics reveal the GPCR activation mechanism.
    Kolan D; Fonar G; Samson AO
    Proteins; 2014 Apr; 82(4):579-86. PubMed ID: 24123518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors.
    Vogel R; Mahalingam M; Lüdeke S; Huber T; Siebert F; Sakmar TP
    J Mol Biol; 2008 Jul; 380(4):648-55. PubMed ID: 18554610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward the active conformations of rhodopsin and the beta2-adrenergic receptor.
    Gouldson PR; Kidley NJ; Bywater RP; Psaroudakis G; Brooks HD; Diaz C; Shire D; Reynolds CA
    Proteins; 2004 Jul; 56(1):67-84. PubMed ID: 15162487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insights into agonist-induced activation of G-protein-coupled receptors.
    Deupi X; Standfuss J
    Curr Opin Struct Biol; 2011 Aug; 21(4):541-51. PubMed ID: 21723721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active state-like conformational elements in the beta2-AR and a photoactivated intermediate of rhodopsin identified by dynamic properties of GPCRs.
    Han DS; Wang SX; Weinstein H
    Biochemistry; 2008 Jul; 47(28):7317-21. PubMed ID: 18558776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational and Thermodynamic Landscape of GPCR Activation from Theory and Computation.
    Dong SS; Goddard WA; Abrol R
    Biophys J; 2016 Jun; 110(12):2618-2629. PubMed ID: 27332120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the conformational dynamics of the apo A2A adenosine receptor.
    Caliman AD; Swift SE; Wang Y; Miao Y; McCammon JA
    Protein Sci; 2015 Jun; 24(6):1004-12. PubMed ID: 25761901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in β-arrestin coupling.
    Staus DP; Wingler LM; Choi M; Pani B; Manglik A; Kruse AC; Lefkowitz RJ
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3834-3839. PubMed ID: 29581292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying conformational changes in GPCRs: glimpse of a common functional mechanism.
    Dalton JA; Lans I; Giraldo J
    BMC Bioinformatics; 2015 Apr; 16(1):124. PubMed ID: 25902715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of structural distortions in the transmembrane helices of GPCRs.
    Deupi X
    Methods Mol Biol; 2012; 914():219-35. PubMed ID: 22976031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodopsin: structural basis of molecular physiology.
    Menon ST; Han M; Sakmar TP
    Physiol Rev; 2001 Oct; 81(4):1659-88. PubMed ID: 11581499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery.
    Huber T; Menon S; Sakmar TP
    Biochemistry; 2008 Oct; 47(42):11013-23. PubMed ID: 18821775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection.
    Ye L; Van Eps N; Zimmer M; Ernst OP; Prosser RS
    Nature; 2016 May; 533(7602):265-8. PubMed ID: 27144352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.