These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 26522510)
1. Differences in surrogate threshold effect estimates between original and simplified correlation-based validation approaches. Schürmann C; Sieben W Stat Med; 2016 Mar; 35(7):1049-62. PubMed ID: 26522510 [TBL] [Abstract][Full Text] [Related]
2. Exploring the relationship between the causal-inference and meta-analytic paradigms for the evaluation of surrogate endpoints. Van der Elst W; Molenberghs G; Alonso A Stat Med; 2016 Apr; 35(8):1281-98. PubMed ID: 26612787 [TBL] [Abstract][Full Text] [Related]
3. Is blood pressure reduction a valid surrogate endpoint for stroke prevention? An analysis incorporating a systematic review of randomised controlled trials, a by-trial weighted errors-in-variables regression, the surrogate threshold effect (STE) and the Biomarker-Surrogacy (BioSurrogate) Evaluation Schema (BSES). Lassere MN; Johnson KR; Schiff M; Rees D BMC Med Res Methodol; 2012 Mar; 12():27. PubMed ID: 22409774 [TBL] [Abstract][Full Text] [Related]
4. Surrogate threshold effect: an alternative measure for meta-analytic surrogate endpoint validation. Burzykowski T; Buyse M Pharm Stat; 2006; 5(3):173-86. PubMed ID: 17080751 [TBL] [Abstract][Full Text] [Related]
5. Alternative methods to evaluate trial level surrogacy. Abrahantes JC; Shkedy Z; Molenberghs G Clin Trials; 2008; 5(3):194-208. PubMed ID: 18559408 [TBL] [Abstract][Full Text] [Related]
6. Validation of surrogate markers in multiple randomized clinical trials with repeated measurements: canonical correlation approach. Alonso A; Geys H; Molenberghs G; Kenward MG; Vangeneugden T Biometrics; 2004 Dec; 60(4):845-53. PubMed ID: 15606404 [TBL] [Abstract][Full Text] [Related]
7. How to use frailtypack for validating failure-time surrogate endpoints using individual patient data from meta-analyses of randomized controlled trials. Sofeu CL; Rondeau V PLoS One; 2020; 15(1):e0228098. PubMed ID: 31990928 [TBL] [Abstract][Full Text] [Related]
8. Uncertainty in the Bayesian meta-analysis of normally distributed surrogate endpoints. Bujkiewicz S; Thompson JR; Spata E; Abrams KR Stat Methods Med Res; 2017 Oct; 26(5):2287-2318. PubMed ID: 26271918 [TBL] [Abstract][Full Text] [Related]
9. A reflection on the causal interpretation of individual-level surrogacy. Alonso A; Van Der Elst W; Molenberghs G; Florez AJ J Biopharm Stat; 2019; 29(3):529-540. PubMed ID: 30773114 [TBL] [Abstract][Full Text] [Related]
10. The individual-level surrogate threshold effect in a causal-inference setting with normally distributed endpoints. Van der Elst W; Abad AA; Coppenolle H; Meyvisch P; Molenberghs G Pharm Stat; 2021 Nov; 20(6):1216-1231. PubMed ID: 34018666 [TBL] [Abstract][Full Text] [Related]
11. A simple meta-analytic approach for using a binary surrogate endpoint to predict the effect of intervention on true endpoint. Baker SG Biostatistics; 2006 Jan; 7(1):58-70. PubMed ID: 15972889 [TBL] [Abstract][Full Text] [Related]
12. A new proportion measure of the treatment effect captured by candidate surrogate endpoints. Kobayashi F; Kuroki M Stat Med; 2014 Aug; 33(19):3338-53. PubMed ID: 24782344 [TBL] [Abstract][Full Text] [Related]
13. Information theory-based surrogate marker evaluation from several randomized clinical trials with binary endpoints, using SAS. Tilahun A; Pryseley A; Alonso A; Molenberghs G J Biopharm Stat; 2008; 18(2):326-41. PubMed ID: 18327724 [TBL] [Abstract][Full Text] [Related]
14. Statistical challenges in the evaluation of surrogate endpoints in randomized trials. Molenberghs G; Buyse M; Geys H; Renard D; Burzykowski T; Alonso A Control Clin Trials; 2002 Dec; 23(6):607-25. PubMed ID: 12505240 [TBL] [Abstract][Full Text] [Related]
15. Five criteria for using a surrogate endpoint to predict treatment effect based on data from multiple previous trials. Baker SG Stat Med; 2018 Feb; 37(4):507-518. PubMed ID: 29164641 [TBL] [Abstract][Full Text] [Related]
16. surrosurv: An R package for the evaluation of failure time surrogate endpoints in individual patient data meta-analyses of randomized clinical trials. Rotolo F; Paoletti X; Michiels S Comput Methods Programs Biomed; 2018 Mar; 155():189-198. PubMed ID: 29512498 [TBL] [Abstract][Full Text] [Related]
17. Does the decision in a validation process of a surrogate endpoint change with level of significance of treatment effect? A proposal on validation of surrogate endpoints. Sertdemir Y; Burgut R Contemp Clin Trials; 2009 Jan; 30(1):8-12. PubMed ID: 18809512 [TBL] [Abstract][Full Text] [Related]
18. A unified framework for the evaluation of surrogate endpoints in mental-health clinical trials. Molenberghs G; Burzykowski T; Alonso A; Assam P; Tilahun A; Buyse M Stat Methods Med Res; 2010 Jun; 19(3):205-36. PubMed ID: 19608602 [TBL] [Abstract][Full Text] [Related]
19. An information-theoretic approach for the evaluation of surrogate endpoints based on causal inference. Alonso A; Van der Elst W; Molenberghs G; Buyse M; Burzykowski T Biometrics; 2016 Sep; 72(3):669-77. PubMed ID: 26864244 [TBL] [Abstract][Full Text] [Related]
20. Statistical approaches to identify subgroups in meta-analysis of individual participant data: a simulation study. Belias M; Rovers MM; Reitsma JB; Debray TPA; IntHout J BMC Med Res Methodol; 2019 Sep; 19(1):183. PubMed ID: 31477023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]