These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26522613)

  • 21. Nanomechanical characterization of alumina coatings grown on FeCrAl alloy by thermal oxidation.
    Frutos E; González-Carrasco JL; Polcar T
    J Mech Behav Biomed Mater; 2016 Apr; 57():310-20. PubMed ID: 26875145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silicon Nitride as a Biomedical Material: An Overview.
    Du X; Lee SS; Blugan G; Ferguson SJ
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interfacial fracture toughness of different resin cements bonded to a lithium disilicate glass ceramic.
    Hooshmand T; Rostami G; Behroozibakhsh M; Fatemi M; Keshvad A; van Noort R
    J Dent; 2012 Feb; 40(2):139-45. PubMed ID: 22182467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Statistical analysis of the behavior of fracture toughness of compound bioceramic artificial bone.
    Xu S; Xu R; Li R
    Artif Organs; 2011 Dec; 35(12):1160-8. PubMed ID: 21810112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of processing induced particle alignment on the fracture toughness and fracture behavior of multiphase dental ceramics.
    Gonzaga CC; Okada CY; Cesar PF; Miranda WG; Yoshimura HN
    Dent Mater; 2009 Nov; 25(11):1293-301. PubMed ID: 19570570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanocrystalline diamond: In vitro biocompatibility assessment by MG63 and human bone marrow cells cultures.
    Amaral M; Dias AG; Gomes PS; Lopes MA; Silva RF; Santos JD; Fernandes MH
    J Biomed Mater Res A; 2008 Oct; 87(1):91-9. PubMed ID: 18085649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioinertness and fracture toughness evaluation of the monoclinic zirconia surface film of Oxinium™ femoral head by Raman and cathodoluminescence spectroscopy.
    Leto A; Zhu W; Matsubara M; Pezzotti G
    J Mech Behav Biomed Mater; 2014 Mar; 31():135-44. PubMed ID: 24269206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman piezo-spectroscopic analysis of natural and synthetic biomaterials.
    Pezzotti G
    Anal Bioanal Chem; 2005 Feb; 381(3):577-90. PubMed ID: 15459801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silicon nitride: a potent solid-state bioceramic inactivator of ssRNA viruses.
    Pezzotti G; Boschetto F; Ohgitani E; Fujita Y; Zhu W; Marin E; McEntire BJ; Bal BS; Mazda O
    Sci Rep; 2021 Feb; 11(1):2977. PubMed ID: 33536558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microstructure, toughness and flexural strength of self-reinforced silicon nitride ceramics doped with yttrium oxide and ytterbium oxide.
    Zheng YS; Knowles KM; Vieira JM; Lopes AB; Oliveira FJ
    J Microsc; 2001 Feb; 201(2):238-249. PubMed ID: 11207926
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method.
    Guo XZ; Yang H
    J Zhejiang Univ Sci B; 2005 Mar; 6(3):213-8. PubMed ID: 15682507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexural strength and fracture toughness of dental core ceramics.
    Yilmaz H; Aydin C; Gul BE
    J Prosthet Dent; 2007 Aug; 98(2):120-8. PubMed ID: 17692593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics.
    Peitl O; Zanotto ED; Serbena FC; Hench LL
    Acta Biomater; 2012 Jan; 8(1):321-32. PubMed ID: 22032913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancement of toughness and wear resistance in boron nitride nanoplatelet (BNNP) reinforced Si3N4 nanocomposites.
    Lee B; Lee D; Lee JH; Ryu HJ; Hong SH
    Sci Rep; 2016 Jun; 6():27609. PubMed ID: 27271465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elastic constants, Vickers hardness, and fracture toughness of fluorrichterite-based glass-ceramics.
    Denry IL; Holloway JA
    Dent Mater; 2004 Mar; 20(3):213-9. PubMed ID: 15209226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effects of additive oxide, repeating load on the fracture toughness of calcium phosphate crystalline ceramics (CPCC)].
    Takahashi H; Shinya A; Yokozuka S
    Shigaku; 1990 Oct; 78(3):505-25. PubMed ID: 2134802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A biocompatible silicon nitride dental implant material prepared by digital light processing technology.
    Zou R; Bi L; Huang Y; Wang Y; Wang Y; Li L; Liu J; Feng L; Jiang X; Deng B
    J Mech Behav Biomed Mater; 2023 May; 141():105756. PubMed ID: 36898355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of mechanical properties and biocompatibility of forsterite bioceramic addressed to bone tissue engineering materials.
    Kharaziha M; Fathi MH
    J Mech Behav Biomed Mater; 2010 Oct; 3(7):530-7. PubMed ID: 20696418
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Surface Ramam spectropscopy for in situ investigating silicon etching process].
    Liu F; Ren B; Tian Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Dec; 20(6):833-5. PubMed ID: 12938485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional atomic force microscopy investigation of osteopontin affinity for silicon stabilized tricalcium phosphate bioceramic surfaces.
    Pietak AM; Sayer M
    Biomaterials; 2006 Jan; 27(1):3-14. PubMed ID: 16011845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.