These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 26522623)

  • 1. A novel specimen-specific methodology to optimise the alignment of long bones for experimental testing.
    Cheong VS; Bull AM
    J Biomech; 2015 Dec; 48(16):4317-21. PubMed ID: 26522623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometrical properties of the ovine tibia: a suitable animal model to study the pin-bone interface in fracture fixation?
    Finlay JB; Hurtig MB; Hardie WR; Liggins AB; Batte SW
    Proc Inst Mech Eng H; 1995; 209(1):37-50. PubMed ID: 7669119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape and function of the diaphysis of the human tibia.
    Cristofolini L; Angeli E; Juszczyk JM; Juszczyk MM
    J Biomech; 2013 Jul; 46(11):1882-92. PubMed ID: 23726289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nondestructive Assessment of Growing Rat Tibial Mechanical Properties Under Three-Point Bending: A Microcomputed Tomography Based Finite Element Study.
    Zimmermann Y; Mustafy T; Villemure I
    J Biomech Eng; 2020 Dec; 142(12):. PubMed ID: 32747943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of thresholding techniques on microCT-based finite element models of trabecular bone.
    Kim CH; Zhang H; Mikhail G; von Stechow D; Müller R; Kim HS; Guo XE
    J Biomech Eng; 2007 Aug; 129(4):481-6. PubMed ID: 17655468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone.
    Grant CA; Wilson LJ; Langton C; Epari D
    Med Eng Phys; 2014 Jul; 36(7):869-74. PubMed ID: 24793408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-zone material assignment method for correcting partial volume effects in image-based bone models.
    Inglis B; Grumbles D; Dailey HL
    Comput Methods Biomech Biomed Engin; 2023 Sep; 26(12):1431-1442. PubMed ID: 36062947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of cancellous and cortical bone strain in the in vivo mouse tibial loading model using microCT-based finite element analysis.
    Yang H; Butz KD; Duffy D; Niebur GL; Nauman EA; Main RP
    Bone; 2014 Sep; 66():131-9. PubMed ID: 24925445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The geometrical properties of human femur and tibia and their importance for the mechanical behaviour of these bone structures.
    Martens M; Van Audekercke R; De Meester P; Mulier JC
    Arch Orthop Trauma Surg (1978); 1981; 98(2):113-20. PubMed ID: 7294986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the regional variations in the mechanical properties of cancellous bone of the tibia using indentation testing and quantitative computed tomographic imaging.
    Vijayakumar V; Quenneville CE
    Proc Inst Mech Eng H; 2016 Jun; 230(6):588-93. PubMed ID: 27068841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of the classic metaphyseal lesion: finite element analysis.
    Tsai A; Coats B; Kleinman PK
    Pediatr Radiol; 2017 Nov; 47(12):1622-1630. PubMed ID: 28721473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method of determining bending properties of poultry long bones using beam analysis and micro-CT data.
    Vaughan PE; Orth MW; Haut RC; Karcher DM
    Poult Sci; 2016 Jan; 95(1):207-12. PubMed ID: 26794840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element analysis and computed tomography based structural rigidity analysis of rat tibia with simulated lytic defects.
    Rennick JA; Nazarian A; Entezari V; Kimbaris J; Tseng A; Masoudi A; Nayeb-Hashemi H; Vaziri A; Snyder BD
    J Biomech; 2013 Oct; 46(15):2701-9. PubMed ID: 23972429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of animal and human bones for predicting probable location of fractures.
    Manarvi I
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2194-2197. PubMed ID: 28268766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D characterization of bone strains in the rat tibia loading model.
    Torcasio A; Zhang X; Duyck J; van Lenthe GH
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):403-10. PubMed ID: 21688057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between different methods for biomechanical assessment of ex vivo fracture callus stiffness in small animal bone healing studies.
    Steiner M; Volkheimer D; Meyers N; Wehner T; Wilke HJ; Claes L; Ignatius A
    PLoS One; 2015; 10(3):e0119603. PubMed ID: 25781027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Adaptable Computed Tomography-Derived Three-Dimensional-Printed Alignment Fixture Minimizes Errors in Radius Biomechanical Testing.
    Inacio JV; Cristino DM; Hast MW; Dailey HL
    J Biomech Eng; 2021 Nov; 143(11):. PubMed ID: 34114605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.