These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
520 related articles for article (PubMed ID: 26522834)
61. Hepatic role in an early glucose-lowering effect by a novel dipeptidyl peptidase 4 inhibitor, evogliptin, in a rodent model of type 2 diabetes. Kim TH; Kim MK; Cheong YH; Chae YN; Lee Y; Ka SO; Jung IH; Shin CY; Bae EJ; Son MH Eur J Pharmacol; 2016 Jan; 771():65-76. PubMed ID: 26621343 [TBL] [Abstract][Full Text] [Related]
62. The inhibiting effect of the Coptis chinensis polysaccharide on the type II diabetic mice. Cui L; Liu M; Chang X; Sun K Biomed Pharmacother; 2016 Jul; 81():111-119. PubMed ID: 27261584 [TBL] [Abstract][Full Text] [Related]
63. Deteriorated high-fat diet-induced diabetes caused by pancreatic β-cell-specific overexpression of Reg3β gene in mice. Xiong X; Li Q; Cui W; Gao ZH; Liu JL Endocrine; 2016 Nov; 54(2):360-370. PubMed ID: 27259509 [TBL] [Abstract][Full Text] [Related]
64. Rosmarinic acid ameliorates hyperglycemia and insulin sensitivity in diabetic rats, potentially by modulating the expression of PEPCK and GLUT4. Runtuwene J; Cheng KC; Asakawa A; Amitani H; Amitani M; Morinaga A; Takimoto Y; Kairupan BH; Inui A Drug Des Devel Ther; 2016; 10():2193-202. PubMed ID: 27462144 [TBL] [Abstract][Full Text] [Related]
65. DhHP-6 ameliorates hepatic oxidative stress and insulin resistance in type 2 diabetes mellitus through the PI3K/AKT and AMPK pathway. Wang K; Liang Y; Su Y; Wang L Biochem J; 2020 Jun; 477(12):2363-2381. PubMed ID: 32510127 [TBL] [Abstract][Full Text] [Related]
66. Polydatin improves glucose and lipid metabolism in experimental diabetes through activating the Akt signaling pathway. Hao J; Chen C; Huang K; Huang J; Li J; Liu P; Huang H Eur J Pharmacol; 2014 Dec; 745():152-65. PubMed ID: 25310908 [TBL] [Abstract][Full Text] [Related]
67. Testosterone supplementation improves glucose homeostasis despite increasing hepatic insulin resistance in male mouse model of type 2 diabetes mellitus. Pal M; Gupta S Nutr Diabetes; 2016 Dec; 6(12):e236. PubMed ID: 27941939 [TBL] [Abstract][Full Text] [Related]
68. Paraoxonase1 (PON1) reduces insulin resistance in mice fed a high-fat diet, and promotes GLUT4 overexpression in myocytes, via the IRS-1/Akt pathway. Koren-Gluzer M; Aviram M; Hayek T Atherosclerosis; 2013 Jul; 229(1):71-8. PubMed ID: 23639858 [TBL] [Abstract][Full Text] [Related]
69. Oxidative stress and expression of insulin signaling proteins in the brain of diabetic rats: Role of Nigella sativa oil and antidiabetic drugs. Balbaa M; Abdulmalek SA; Khalil S PLoS One; 2017; 12(5):e0172429. PubMed ID: 28505155 [TBL] [Abstract][Full Text] [Related]
71. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways. Zhou J; Xu G; Ma S; Li F; Yuan M; Xu H; Huang K Biochem Biophys Res Commun; 2015 Nov; 467(4):853-8. PubMed ID: 26474703 [TBL] [Abstract][Full Text] [Related]
72. Oxidative stress--mediated alterations in glucose dynamics in a genetic animal model of type II diabetes. Bitar MS; Al-Saleh E; Al-Mulla F Life Sci; 2005 Sep; 77(20):2552-73. PubMed ID: 15936776 [TBL] [Abstract][Full Text] [Related]
73. AMPK activation is involved in hypoglycemic and hypolipidemic activities of mogroside-rich extract from Siraitia grosvenorii (Swingle) fruits on high-fat diet/streptozotocin-induced diabetic mice. Liu H; Qi X; Yu K; Lu A; Lin K; Zhu J; Zhang M; Sun Z Food Funct; 2019 Jan; 10(1):151-162. PubMed ID: 30516208 [TBL] [Abstract][Full Text] [Related]
75. Olive leaf extract suppresses messenger RNA expression of proinflammatory cytokines and enhances insulin receptor substrate 1 expression in the rats with streptozotocin and high-fat diet-induced diabetes. Liu YN; Jung JH; Park H; Kim H Nutr Res; 2014 May; 34(5):450-7. PubMed ID: 24916559 [TBL] [Abstract][Full Text] [Related]
76. Role of peroxisome proliferator-activated receptor-gamma activation on visfatin, advanced glycation end products, and renal oxidative stress in obesity-induced type 2 diabetes mellitus. Tabassum A; Mahboob T Hum Exp Toxicol; 2018 Nov; 37(11):1187-1198. PubMed ID: 29441829 [TBL] [Abstract][Full Text] [Related]
77. Antidiabetic effect of total flavonoids from Sanguis draxonis in type 2 diabetic rats. Chen F; Xiong H; Wang J; Ding X; Shu G; Mei Z J Ethnopharmacol; 2013 Oct; 149(3):729-36. PubMed ID: 23933499 [TBL] [Abstract][Full Text] [Related]
78. Hepatic circadian-clock system altered by insulin resistance, diabetes and insulin sensitizer in mice. Tseng HL; Yang SC; Yang SH; Shieh KR PLoS One; 2015; 10(3):e0120380. PubMed ID: 25799429 [TBL] [Abstract][Full Text] [Related]
79. The role of resistance and aerobic exercise training on insulin sensitivity measures in STZ-induced Type 1 diabetic rodents. Hall KE; McDonald MW; Grisé KN; Campos OA; Noble EG; Melling CW Metabolism; 2013 Oct; 62(10):1485-94. PubMed ID: 23810201 [TBL] [Abstract][Full Text] [Related]
80. [The effects of insulin and gliclazide therapy on endoplasmic reticulum stress and insulin sensitivity in liver of type 2 diabetic rats]. Sun WP; Bi Y; Liang H; Cai MY; Chen X; Zhu YH; Liao LZ; Weng JP Zhonghua Nei Ke Za Zhi; 2012 Aug; 51(8):638-41. PubMed ID: 23158865 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]