These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2652307)

  • 1. Quantitative SPECT in radiation dosimetry.
    Zanzonico PB; Bigler RE; Sgouros G; Strauss A
    Semin Nucl Med; 1989 Jan; 19(1):47-61. PubMed ID: 2652307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of missing attenuation and scatter corrections on
    Botta F; Ferrari M; Chiesa C; Vitali S; Guerriero F; Nile MC; Mira M; Lorenzon L; Pacilio M; Cremonesi M
    Med Phys; 2018 Apr; 45(4):1684-1698. PubMed ID: 29383733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Image quantification for radiation dose calculations--limitations and uncertainties.
    Pereira JM; Stabin MG; Lima FR; Guimarães MI; Forrester JW
    Health Phys; 2010 Nov; 99(5):688-701. PubMed ID: 20938240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system.
    Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH
    J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative SPECT of uptake of monoclonal antibodies.
    DeNardo GL; Macey DJ; DeNardo SJ; Zhang CG; Custer TR
    Semin Nucl Med; 1989 Jan; 19(1):22-32. PubMed ID: 2652304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation.
    Dewaraja YK; Wilderman SJ; Ljungberg M; Koral KF; Zasadny K; Kaminiski MS
    J Nucl Med; 2005 May; 46(5):840-9. PubMed ID: 15872359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction.
    Elschot M; Smits ML; Nijsen JF; Lam MG; Zonnenberg BA; van den Bosch MA; Viergever MA; de Jong HW
    Med Phys; 2013 Nov; 40(11):112502. PubMed ID: 24320461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitatively accurate activity measurements with a dedicated cardiac SPECT camera: Physical phantom experiments.
    Pourmoghaddas A; Wells RG
    Med Phys; 2016 Jan; 43(1):44. PubMed ID: 26745898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of scatter and attenuation corrections for iodine-131 two-dimensional quantitative imaging in patients.
    Delpon G; Ferrer L; Lisbona A; Bardiès M
    Cancer Biother Radiopharm; 2003 Apr; 18(2):191-9. PubMed ID: 12804044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of reconstruction parameters on quantitative I-131 SPECT.
    van Gils CA; Beijst C; van Rooij R; de Jong HW
    Phys Med Biol; 2016 Jul; 61(14):5166-82. PubMed ID: 27352225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytically based photon scatter modeling for a multipinhole cardiac SPECT camera.
    Pourmoghaddas A; Wells RG
    Med Phys; 2016 Nov; 43(11):6098. PubMed ID: 27806581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonuniform transmission in brain SPECT using 201Tl, 153Gd, and 99mTc static line sources: anthropomorphic dosimetry studies and influence on brain quantification.
    Van Laere K; Koole M; Kauppinen T; Monsieurs M; Bouwens L; Dierck R
    J Nucl Med; 2000 Dec; 41(12):2051-62. PubMed ID: 11138692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction.
    Zeintl J; Vija AH; Yahil A; Hornegger J; Kuwert T
    J Nucl Med; 2010 Jun; 51(6):921-8. PubMed ID: 20484423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of SPECT corrections on 3D-dosimetry for liver transarterial radioembolization using the patient relative calibration methodology.
    Pacilio M; Ferrari M; Chiesa C; Lorenzon L; Mira M; Botta F; Becci D; Torres LA; Coca Perez M; Vergara Gil A; Basile C; Ljungberg M; Pani R; Cremonesi M
    Med Phys; 2016 Jul; 43(7):4053. PubMed ID: 27370124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy.
    Flux G; Bardies M; Monsieurs M; Savolainen S; Strands SE; Lassmann M;
    Z Med Phys; 2006; 16(1):47-59. PubMed ID: 16696370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fully automated contour detection algorithm the preliminary step for scatter and attenuation compensation in SPECT.
    Ben Younes R; Mas J; Bidet R
    Eur J Nucl Med; 1988; 14(12):586-9. PubMed ID: 3266599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved dosimetry for targeted radionuclide therapy using nonrigid registration on sequential SPECT images.
    Ao EC; Wu NY; Wang SJ; Song N; Mok GS
    Med Phys; 2015 Feb; 42(2):1060-70. PubMed ID: 25652518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-dimensional ray-driven attenuation, scatter and geometric response correction technique for SPECT in inhomogeneous media.
    Laurette I; Zeng GL; Welch A; Christian PE; Gullberg GT
    Phys Med Biol; 2000 Nov; 45(11):3459-80. PubMed ID: 11098917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT.
    El Fakhri G; Buvat I; Benali H; Todd-Pokropek A; Di Paola R
    J Nucl Med; 2000 Aug; 41(8):1400-8. PubMed ID: 10945534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gamma camera calibration and validation for quantitative SPECT imaging with (177)Lu.
    D'Arienzo M; Cazzato M; Cozzella ML; Cox M; D'Andrea M; Fazio A; Fenwick A; Iaccarino G; Johansson L; Strigari L; Ungania S; De Felice P
    Appl Radiat Isot; 2016 Jun; 112():156-64. PubMed ID: 27064195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.