BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26523116)

  • 1. Soft Computing Methods for Disulfide Connectivity Prediction.
    Márquez-Chamorro AE; Aguilar-Ruiz JS
    Evol Bioinform Online; 2015; 11():223-9. PubMed ID: 26523116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinformatics approaches for disulfide connectivity prediction.
    Tsai CH; Chan CH; Chen BJ; Kao CY; Liu HL; Hsu JP
    Curr Protein Pept Sci; 2007 Jun; 8(3):243-60. PubMed ID: 17584119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the relevance of sophisticated structural annotations for disulfide connectivity pattern prediction.
    Becker J; Maes F; Wehenkel L
    PLoS One; 2013; 8(2):e56621. PubMed ID: 23533562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Software Reliability using Bio Inspired Soft Computing Techniques.
    Diwaker C; Tomar P; Poonia RC; Singh V
    J Med Syst; 2018 Apr; 42(5):93. PubMed ID: 29637392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Soft Computing Approaches in HealthCare Domain: A Mini Review.
    Gambhir S; Malik SK; Kumar Y
    J Med Syst; 2016 Dec; 40(12):287. PubMed ID: 27796841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.
    Song J; Yuan Z; Tan H; Huber T; Burrage K
    Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disulfide connectivity prediction using recursive neural networks and evolutionary information.
    Vullo A; Frasconi P
    Bioinformatics; 2004 Mar; 20(5):653-9. PubMed ID: 15033872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disulfide connectivity prediction based on structural information without a prior knowledge of the bonding state of cysteines.
    Lin HH; Hsu JC; Hsu YN; Pan RH; Chen YF; Tseng LY
    Comput Biol Med; 2013 Nov; 43(11):1941-8. PubMed ID: 24209939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine separations profiles on protein sequences infer disulfide connectivity.
    Zhao E; Liu HL; Tsai CH; Tsai HK; Chan CH; Kao CY
    Bioinformatics; 2005 Apr; 21(8):1415-20. PubMed ID: 15585533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting disulfide connectivity patterns.
    Lu CH; Chen YC; Yu CS; Hwang JK
    Proteins; 2007 May; 67(2):262-70. PubMed ID: 17285623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks.
    Passerini A; Punta M; Ceroni A; Rost B; Frasconi P
    Proteins; 2006 Nov; 65(2):305-16. PubMed ID: 16927295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simplified approach to disulfide connectivity prediction from protein sequences.
    Vincent M; Passerini A; Labbé M; Frasconi P
    BMC Bioinformatics; 2008 Jan; 9():20. PubMed ID: 18194539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of soft computing in intelligent machines.
    de Silva CW
    Philos Trans A Math Phys Eng Sci; 2003 Aug; 361(1809):1749-80. PubMed ID: 12952684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inter- and intra-chain disulfide bond prediction based on optimal feature selection.
    Niu S; Huang T; Feng KY; He Z; Cui W; Gu L; Li H; Cai YD; Li Y
    Protein Pept Lett; 2013 Mar; 20(3):324-35. PubMed ID: 22591475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving disulfide connectivity prediction with sequential distance between oxidized cysteines.
    Tsai CH; Chen BJ; Chan CH; Liu HL; Kao CY
    Bioinformatics; 2005 Dec; 21(24):4416-9. PubMed ID: 16223789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of disulfide bond engineering sites using a machine learning method.
    Gao X; Dong X; Li X; Liu Z; Liu H
    Sci Rep; 2020 Jun; 10(1):10330. PubMed ID: 32587353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting disulfide bond connectivity in proteins by correlated mutations analysis.
    Rubinstein R; Fiser A
    Bioinformatics; 2008 Feb; 24(4):498-504. PubMed ID: 18203772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the state of cysteines based on sequence information.
    Guang X; Guo Y; Xiao J; Wang X; Sun J; Xiong W; Li M
    J Theor Biol; 2010 Dec; 267(3):312-8. PubMed ID: 20826168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of disulfide connectivity from protein sequences.
    Chen YC; Hwang JK
    Proteins; 2005 Nov; 61(3):507-12. PubMed ID: 16170781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins.
    Yang J; He BJ; Jang R; Zhang Y; Shen HB
    Bioinformatics; 2015 Dec; 31(23):3773-81. PubMed ID: 26254435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.