These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26523227)

  • 21. Sensing concept based on Bloch surface waves and wavelength interrogation.
    Gryga M; Ciprian D; Hlubina P
    Opt Lett; 2020 Mar; 45(5):1096-1099. PubMed ID: 32108779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transfer of 1D Photonic Crystals via Spatially Resolved Hydrophobization.
    Däntl M; Guderley S; Szendrei-Temesi K; Chatzitheodoridou D; Ganter P; Jiménez-Solano A; Lotsch BV
    Small; 2021 Mar; 17(12):e2007864. PubMed ID: 33590689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-Dimensional Hole-Array Grating-Coupling-Based Excitation of Bloch Surface Waves for Highly Sensitive Biosensing.
    Ge D; Shi J; Rezk A; Ma C; Zhang L; Yang P; Zhu S
    Nanoscale Res Lett; 2019 Oct; 14(1):319. PubMed ID: 31599355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensing performance optimization of the Bloch surface wave biosensor based on the Bloch impedance-matching method.
    Ma J; Kang XB; Wang ZG
    Opt Lett; 2018 Nov; 43(21):5375-5378. PubMed ID: 30383011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic moist air monitor in a micro area with extremely high figure-of-merit.
    Chen Y; Kong Z; Sun W; Liang J; Xing J; Lin S; Zhu S; Zhang H; Shen Z; Lu J
    Opt Express; 2022 Sep; 30(19):34510-34518. PubMed ID: 36242461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensing based on Bloch surface wave and self-referenced guided mode resonances employing a one-dimensional photonic crystal.
    Gryga M; Ciprian D; Gembalova L; Hlubina P
    Opt Express; 2021 Apr; 29(9):12996-13010. PubMed ID: 33985045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Q lasing via all-dielectric Bloch-surface-wave platform.
    Lee YC; Ho YL; Lin BW; Chen MH; Xing D; Daiguji H; Delaunay JJ
    Nat Commun; 2023 Oct; 14(1):6458. PubMed ID: 37833267
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active tuning of longitudinal strong coupling between anisotropic borophene plasmons and Bloch surface waves.
    Nong J; Xiao X; Feng F; Zhao B; Min C; Yuan X; Somekh M
    Opt Express; 2021 Aug; 29(17):27750-27759. PubMed ID: 34615184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules.
    Rodriguez GA; Lonai JD; Mernaugh RL; Weiss SM
    Nanoscale Res Lett; 2014; 9(1):383. PubMed ID: 25136285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor.
    Rodriguez GA; Ryckman JD; Jiao Y; Weiss SM
    Biosens Bioelectron; 2014 Mar; 53():486-93. PubMed ID: 24211462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct competitive assay for HER2 detection in human plasma using Bloch surface wave-based biosensors.
    Pileri T; Sinibaldi A; Occhicone A; Danz N; Giordani E; Allegretti M; Sonntag F; Munzert P; Giacomini P; Michelotti F
    Anal Biochem; 2024 Jan; 684():115374. PubMed ID: 37914005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Refractive index sensor based on graphene-coated photonic surface-wave resonance.
    Yang Q; Qin L; Cao G; Zhang C; Li X
    Opt Lett; 2018 Feb; 43(4):639-642. PubMed ID: 29444041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear Bloch waves in resonantly doped photonic crystals.
    Kaso A; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046611. PubMed ID: 17155196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Refractometric sensitivity of Bloch surface waves: perturbation theory calculation and experimental validation.
    Dias BS; de Almeida JMMM; Coelho LCC
    Opt Lett; 2023 Feb; 48(3):727-730. PubMed ID: 36723574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bloch Surface Waves Mediated Micro-Spectroscopy.
    Wang R; Lei X; Liu L; Wu L; Wu A
    Small; 2021 Dec; 17(49):e2103688. PubMed ID: 34655155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Near-Zero-Index Slabs on Bloch Surface Wave Platform for Long-Range Directional Couplers and Optical Logic Gates.
    Deng CZ; Ho YL; Yamahara H; Tabata H; Delaunay JJ
    ACS Nano; 2022 Feb; 16(2):2224-2232. PubMed ID: 35119823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bloch waves at the surface of a single-layer coating D-shaped photonic crystal fiber.
    Gonzalez-Valencia E; Del Villar I; Torres P
    Opt Lett; 2020 May; 45(9):2547-2550. PubMed ID: 32356813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient Optical Sensing Based on Phase Shift of Waves Supported by a One-Dimensional Photonic Crystal.
    Kaňok R; Hlubina P; Gembalová L; Ciprian D
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bloch surface waves confined in one dimension with a single polymeric nanofibre.
    Wang R; Xia H; Zhang D; Chen J; Zhu L; Wang Y; Yang E; Zang T; Wen X; Zou G; Wang P; Ming H; Badugu R; Lakowicz JR
    Nat Commun; 2017 Feb; 8():14330. PubMed ID: 28155871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Silicon on-chip 1D photonic crystal nanobeam bandstop filters for the parallel multiplexing of ultra-compact integrated sensor array.
    Yang D; Wang C; Ji Y
    Opt Express; 2016 Jul; 24(15):16267-79. PubMed ID: 27464080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.