These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 26523387)

  • 61. The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens.
    Wiemer NG; Dubbelman M; Kostense PJ; Ringens PJ; Polak BC
    Ophthalmology; 2008 Oct; 115(10):1679-86. PubMed ID: 18486214
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The gradient index and spherical aberration of the lens of the human eye.
    Smith G; Atchison DA
    Ophthalmic Physiol Opt; 2001 Jul; 21(4):317-26. PubMed ID: 11430626
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The Associations of Lens Power With Age and Axial Length in Healthy Chinese Children and Adolescents Aged 6 to 18 Years.
    Xiong S; Zhang B; Hong Y; He X; Zhu J; Zou H; Xu X
    Invest Ophthalmol Vis Sci; 2017 Nov; 58(13):5849-5855. PubMed ID: 29141080
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Relationship between the alignment of a non-mydriatic fundus camera, anterior chamber depth and axial length.
    Guo Y; Zhang Y; Xu L; Wang Y; Ma Y; Wang X; Jonas J
    Eye Sci; 2012 Mar; 27(1):30-3. PubMed ID: 22447549
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Emmetropia Is Maintained Despite Continued Eye Growth From 16 to 18 Years of Age.
    Hagen LA; Gilson SJ; Akram MN; Baraas RC
    Invest Ophthalmol Vis Sci; 2019 Oct; 60(13):4178-4186. PubMed ID: 31596926
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Crystalline lens power in myopia.
    Garner LF; Yap M; Scott R
    Optom Vis Sci; 1992 Nov; 69(11):863-5. PubMed ID: 1454303
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Schematic eye with a gradient-index lens and aspheric surfaces.
    Siedlecki D; Kasprzak H; Pierscionek BK
    Opt Lett; 2004 Jun; 29(11):1197-9. PubMed ID: 15209245
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Optical power of the isolated human crystalline lens.
    Borja D; Manns F; Ho A; Ziebarth N; Rosen AM; Jain R; Amelinckx A; Arrieta E; Augusteyn RC; Parel JM
    Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2541-8. PubMed ID: 18316704
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Aging of the optics of the human eye: lens refraction models and principal plane locations.
    Koretz JF; Cook CA
    Optom Vis Sci; 2001 Jun; 78(6):396-404. PubMed ID: 11444628
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An evaluation of Bennett's method for determining the equivalent powers of the eye and its crystalline lens without resort to phakometry.
    Dunne MC; Barnes DA; Royston JM
    Ophthalmic Physiol Opt; 1989 Jan; 9(1):69-71. PubMed ID: 2594382
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Refractive power and biometric properties of the nonhuman primate isolated crystalline lens.
    Borja D; Manns F; Ho A; Ziebarth NM; Acosta AC; Arrieta-Quintera E; Augusteyn RC; Parel JM
    Invest Ophthalmol Vis Sci; 2010 Apr; 51(4):2118-25. PubMed ID: 20107174
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Refractive properties of the healthy human eye during acute hyperglycemia.
    Wiemer NG; Eekhoff EM; Simsek S; Heine RJ; Ringens PJ; Polak BC; Dubbelman M
    Graefes Arch Clin Exp Ophthalmol; 2008 Jul; 246(7):993-8. PubMed ID: 18389272
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Model for co-ordination of corneal and crystalline lens power in emmetropic human eyes.
    Dunne MC
    Ophthalmic Physiol Opt; 1993 Oct; 13(4):397-9. PubMed ID: 8278194
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Calculation of crystalline lens power using a modification of the Bennett method.
    Hernandez VM; Cabot F; Ruggeri M; de Freitas C; Ho A; Yoo S; Parel JM; Manns F
    Biomed Opt Express; 2015 Nov; 6(11):4501-15. PubMed ID: 26601013
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Refractive index of the crystalline lens in young and aged eyes.
    Garner LF; Ooi CS; Smith G
    Clin Exp Optom; 1998; 81(4):145-150. PubMed ID: 12482251
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A possible change of refractive index with age and its relevance to chromatic aberration.
    Millodot M; Newton IA
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1976 Dec; 201(2):159-67. PubMed ID: 1087839
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Refractive development I: Biometric changes during emmetropisation.
    Rozema JJ
    Ophthalmic Physiol Opt; 2023 May; 43(3):347-367. PubMed ID: 36740946
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A simple description of age-related changes in crystalline lens thickness.
    García-Domene MC; Díez-Ajenjo MA; Gracia V; Felipe A; Artigas JM
    Eur J Ophthalmol; 2011; 21(5):597-603. PubMed ID: 21240861
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Analysis of zonular-free zone and lens size in relation to axial length of eye with age.
    Lim SJ; Kang SJ; Kim HB; Kurata Y; Sakabe I; Apple DJ
    J Cataract Refract Surg; 1998 Mar; 24(3):390-6. PubMed ID: 9559477
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Aging of the crystalline lens and presbyopia].
    Beers AP; van der Heijde GL; Dubbelman M
    Tijdschr Gerontol Geriatr; 1998 Aug; 29(4):185-8. PubMed ID: 9746933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.